ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04115
  4. Cited By
Predicted Embedding Power Regression for Large-Scale Out-of-Distribution
  Detection
v1v2 (latest)

Predicted Embedding Power Regression for Large-Scale Out-of-Distribution Detection

7 March 2023
Han Yang
William R. Gebhardt
Alexander Ororbia
Travis J. Desell
    OODD
ArXiv (abs)PDFHTML

Papers citing "Predicted Embedding Power Regression for Large-Scale Out-of-Distribution Detection"

29 / 29 papers shown
Title
Anomaly Detection in Autonomous Driving: A Survey
Anomaly Detection in Autonomous Driving: A Survey
Daniel Bogdoll
Maximilian Nitsche
J. Marius Zöllner
71
121
0
17 Apr 2022
Unsolved Problems in ML Safety
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
244
294
0
28 Sep 2021
Exploring the Limits of Out-of-Distribution Detection
Exploring the Limits of Out-of-Distribution Detection
Stanislav Fort
Jie Jessie Ren
Balaji Lakshminarayanan
77
338
0
06 Jun 2021
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic
  Space
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space
Rui Huang
Yixuan Li
OODD
85
249
0
05 May 2021
ImageNet-21K Pretraining for the Masses
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSegVLMCLIP
324
711
0
22 Apr 2021
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,374
0
08 Oct 2020
Big Transfer (BiT): General Visual Representation Learning
Big Transfer (BiT): General Visual Representation Learning
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
J. Puigcerver
Jessica Yung
Sylvain Gelly
N. Houlsby
MQ
288
1,211
0
24 Dec 2019
Scaling Out-of-Distribution Detection for Real-World Settings
Scaling Out-of-Distribution Detection for Real-World Settings
Dan Hendrycks
Steven Basart
Mantas Mazeika
Andy Zou
Joe Kwon
Mohammadreza Mostajabi
Jacob Steinhardt
Basel Alomair
OODD
193
486
0
25 Nov 2019
The reliability of a deep learning model in clinical out-of-distribution
  MRI data: a multicohort study
The reliability of a deep learning model in clinical out-of-distribution MRI data: a multicohort study
G. Mårtensson
D. Ferreira
T. Granberg
L. Cavallin
K. Oppedal
...
H. Soininen
S. Lovestone
A. Simmons
D. Aarsland
E. Westman
OOD
72
137
0
01 Nov 2019
Are Out-of-Distribution Detection Methods Effective on Large-Scale
  Datasets?
Are Out-of-Distribution Detection Methods Effective on Large-Scale Datasets?
Ryne Roady
Tyler L. Hayes
Ronald Kemker
Ayesha Gonzales
Christopher Kanan
OODD
67
20
0
30 Oct 2019
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
Yonatan Geifman
Ran El-Yaniv
CVBMOOD
128
311
0
26 Jan 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDLUQCV
77
198
0
12 Oct 2018
Discriminative out-of-distribution detection for semantic segmentation
Discriminative out-of-distribution detection for semantic segmentation
Petra Bevandić
Ivan Kreso
Marin Orsic
Sinisa Segvic
68
80
0
23 Aug 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
192
2,063
0
10 Jul 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UDBDLEDLUQCVPER
197
923
0
28 Feb 2018
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
128
882
0
26 Nov 2017
Enhancing The Reliability of Out-of-distribution Image Detection in
  Neural Networks
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang
Yixuan Li
R. Srikant
UQCVOODD
171
2,081
0
08 Jun 2017
Ensemble Sampling
Ensemble Sampling
Xiuyuan Lu
Benjamin Van Roy
129
121
0
20 May 2017
Hard Mixtures of Experts for Large Scale Weakly Supervised Vision
Hard Mixtures of Experts for Large Scale Weakly Supervised Vision
Sam Gross
MarcÁurelio Ranzato
Arthur Szlam
MoE
63
102
0
20 Apr 2017
YOLO9000: Better, Faster, Stronger
YOLO9000: Better, Faster, Stronger
Joseph Redmon
Ali Farhadi
VLMObjD
183
15,633
0
25 Dec 2016
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
842
5,841
0
05 Dec 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
171
3,480
0
07 Oct 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
305
5,534
0
23 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,733
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
467
43,347
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Self-informed neural network structure learning
Self-informed neural network structure learning
David Warde-Farley
Andrew Rabinovich
Dragomir Anguelov
SSL
67
18
0
20 Dec 2014
Describing Textures in the Wild
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
146
2,689
0
14 Nov 2013
1