ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.02333
  4. Cited By
Demystifying What Code Summarization Models Learned

Demystifying What Code Summarization Models Learned

4 March 2023
Yu Wang
Ke Wang
ArXiv (abs)PDFHTML

Papers citing "Demystifying What Code Summarization Models Learned"

17 / 17 papers shown
Title
Fixing the train-test resolution discrepancy
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
141
424
0
14 Jun 2019
COSET: A Benchmark for Evaluating Neural Program Embeddings
COSET: A Benchmark for Evaluating Neural Program Embeddings
Ke Wang
Mihai Christodorescu
35
37
0
27 May 2019
On the Units of GANs (Extended Abstract)
On the Units of GANs (Extended Abstract)
David Bau
Jun-Yan Zhu
Hendrik Strobelt
Bolei Zhou
J. Tenenbaum
William T. Freeman
Antonio Torralba
61
61
0
29 Jan 2019
Cross-lingual Language Model Pretraining
Cross-lingual Language Model Pretraining
Guillaume Lample
Alexis Conneau
116
2,751
0
22 Jan 2019
Structured Neural Summarization
Structured Neural Summarization
Patrick Fernandes
Miltiadis Allamanis
Marc Brockschmidt
GNN
85
212
0
05 Nov 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,324
0
11 Oct 2018
code2seq: Generating Sequences from Structured Representations of Code
code2seq: Generating Sequences from Structured Representations of Code
Uri Alon
Shaked Brody
Omer Levy
Eran Yahav
114
700
0
04 Aug 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
84
478
0
28 Apr 2018
code2vec: Learning Distributed Representations of Code
code2vec: Learning Distributed Representations of Code
Uri Alon
Meital Zilberstein
Omer Levy
Eran Yahav
66
1,184
0
26 Mar 2018
Certified Defenses against Adversarial Examples
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
122
969
0
29 Jan 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
811
132,725
0
12 Jun 2017
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
282
8,587
0
16 Aug 2016
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,145
0
20 Dec 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
584
27,345
0
01 Sep 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.1K
23,414
0
03 Jun 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
293
14,978
1
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
607
15,907
0
12 Nov 2013
1