ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01879
  4. Cited By
Low-Complexity Audio Embedding Extractors

Low-Complexity Audio Embedding Extractors

3 March 2023
Florian Schmid
Khaled Koutini
Gerhard Widmer
ArXivPDFHTML

Papers citing "Low-Complexity Audio Embedding Extractors"

5 / 5 papers shown
Title
Dynamic Convolutional Neural Networks as Efficient Pre-trained Audio
  Models
Dynamic Convolutional Neural Networks as Efficient Pre-trained Audio Models
Florian Schmid
Khaled Koutini
Gerhard Widmer
16
11
0
24 Oct 2023
BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping
BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping
Gasser Elbanna
Neil Scheidwasser
M. Kegler
P. Beckmann
Karl El Hajal
Milos Cernak
SSL
31
21
0
24 Jun 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and
  Aggregation
PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation
Yuan Gong
Yu-An Chung
James R. Glass
VLM
99
144
0
02 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
1