ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.01070
  4. Cited By
GHQ: Grouped Hybrid Q Learning for Heterogeneous Cooperative Multi-agent
  Reinforcement Learning

GHQ: Grouped Hybrid Q Learning for Heterogeneous Cooperative Multi-agent Reinforcement Learning

2 March 2023
Xiaoyang Yu
Youfang Lin
Xiangsen Wang
Sheng Han
Kai Lv
ArXivPDFHTML

Papers citing "GHQ: Grouped Hybrid Q Learning for Heterogeneous Cooperative Multi-agent Reinforcement Learning"

4 / 4 papers shown
Title
FedEntropy: Efficient Device Grouping for Federated Learning Using
  Maximum Entropy Judgment
FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment
Zhiwei Ling
Zhihao Yue
Jun Xia
Ming Hu
Ting Wang
Mingsong Chen
FedML
26
8
0
24 May 2022
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
Tonghan Wang
Heng Dong
V. Lesser
Chongjie Zhang
55
211
0
18 Mar 2020
MAVEN: Multi-Agent Variational Exploration
MAVEN: Multi-Agent Variational Exploration
Anuj Mahajan
Tabish Rashid
Mikayel Samvelyan
Shimon Whiteson
DRL
140
355
0
16 Oct 2019
Stabilising Experience Replay for Deep Multi-Agent Reinforcement
  Learning
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
119
595
0
28 Feb 2017
1