ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.14161
  4. Cited By
Object Reconfiguration with Simulation-Derived Feasible Actions

Object Reconfiguration with Simulation-Derived Feasible Actions

27 February 2023
Yiyuan Lee
Wil Thomason
Zachary Kingston
Lydia E. Kavraki
    AI4CE
ArXivPDFHTML

Papers citing "Object Reconfiguration with Simulation-Derived Feasible Actions"

11 / 11 papers shown
Title
Stable Object Placement Planning From Contact Point Robustness
Stable Object Placement Planning From Contact Point Robustness
Philippe Nadeau
Jonathan Kelly
52
0
0
16 Oct 2024
Reinforcement learning
Reinforcement learning
Florentin Wörgötter
49
2,569
0
16 May 2024
ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
  Manipulation
ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation
Bokui Shen
Zhenyu Jiang
Chris Choy
Leonidas Guibas
Silvio Savarese
Anima Anandkumar
Yuke Zhu
AI4CE
50
41
0
14 Mar 2022
Integrated Task and Motion Planning
Integrated Task and Motion Planning
Caelan Reed Garrett
Rohan Chitnis
Rachel Holladay
Beomjoon Kim
Tom Silver
L. Kaelbling
Tomás Lozano-Pérez
69
492
0
02 Oct 2020
Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a
  Survey
Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey
Wenshuai Zhao
Jorge Peña Queralta
Tomi Westerlund
OffRL
114
724
0
24 Sep 2020
Synchronized Multi-Arm Rearrangement Guided by Mode Graphs with Capacity
  Constraints
Synchronized Multi-Arm Rearrangement Guided by Mode Graphs with Capacity Constraints
Rahul Shome
Kostas E. Bekris
50
26
0
18 May 2020
Learning sparse relational transition models
Learning sparse relational transition models
Victoria Xia
Zi Wang
L. Kaelbling
75
23
0
26 Oct 2018
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNN
AI4CE
PINN
OCL
131
597
0
04 Jun 2018
PDDLStream: Integrating Symbolic Planners and Blackbox Samplers via
  Optimistic Adaptive Planning
PDDLStream: Integrating Symbolic Planners and Blackbox Samplers via Optimistic Adaptive Planning
Caelan Reed Garrett
Tomás Lozano-Pérez
L. Kaelbling
36
256
0
23 Feb 2018
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
324
439
0
01 Dec 2016
Sampling-based Algorithms for Optimal Motion Planning
Sampling-based Algorithms for Optimal Motion Planning
S. Karaman
Emilio Frazzoli
69
4,660
0
05 May 2011
1