ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.09221
  4. Cited By
Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the
  Edge

Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the Edge

18 February 2023
Jingzong Li
Yik Hong Cai
Libin Liu
Yushun Mao
Chun Jason Xue
Hongchang Xu
ArXivPDFHTML

Papers citing "Moby: Empowering 2D Models for Efficient Point Cloud Analytics on the Edge"

16 / 16 papers shown
Title
Easz: An Agile Transformer-based Image Compression Framework for Resource-constrained IoTs
Easz: An Agile Transformer-based Image Compression Framework for Resource-constrained IoTs
Yu Mao
Jingzong Li
Jun Wang
Hong Xu
Tei-Wei Kuo
Nan Guan
Chun Jason Xue
56
0
0
03 May 2025
TorchSparse: Efficient Point Cloud Inference Engine
TorchSparse: Efficient Point Cloud Inference Engine
Haotian Tang
Zhijian Liu
Xiuyu Li
Chengyue Wu
Song Han
3DPC
35
100
0
21 Apr 2022
Delving into Localization Errors for Monocular 3D Object Detection
Delving into Localization Errors for Monocular 3D Object Detection
Xinzhu Ma
Yinmin Zhang
Dan Xu
Dongzhan Zhou
Shuai Yi
Haojie Li
Wanli Ouyang
3DPC
62
226
0
30 Mar 2021
SpAtten: Efficient Sparse Attention Architecture with Cascade Token and
  Head Pruning
SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning
Hanrui Wang
Zhekai Zhang
Song Han
97
384
0
17 Dec 2020
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection
Su Pang
Daniel Morris
H. Radha
3DPC
53
355
0
02 Sep 2020
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
Shaoshuai Shi
Chaoxu Guo
Li Jiang
Zhe Wang
Jianping Shi
Xiaogang Wang
Hongsheng Li
3DPC
85
1,767
0
31 Dec 2019
PointPainting: Sequential Fusion for 3D Object Detection
PointPainting: Sequential Fusion for 3D Object Detection
Sourabh Vora
Alex H. Lang
Bassam Helou
Oscar Beijbom
3DPC
89
784
0
22 Nov 2019
ALERT: Accurate Learning for Energy and Timeliness
ALERT: Accurate Learning for Energy and Timeliness
Chengcheng Wan
M. Santriaji
E. Rogers
H. Hoffmann
Michael Maire
Shan Lu
AI4CE
55
41
0
31 Oct 2019
Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous
  Driving
Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving
Yurong You
Yan Wang
Wei-Lun Chao
Divyansh Garg
Geoff Pleiss
B. Hariharan
M. Campbell
Kilian Q. Weinberger
3DPC
90
395
0
14 Jun 2019
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features
  for Amodal 3D Object Detection
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
Zhixin Wang
Kui Jia
3DPC
64
442
0
05 Mar 2019
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
Shaoshuai Shi
Xiaogang Wang
Hongsheng Li
3DPC
160
2,392
0
11 Dec 2018
Quantization and Training of Neural Networks for Efficient
  Integer-Arithmetic-Only Inference
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
136
3,090
0
15 Dec 2017
Frustum PointNets for 3D Object Detection from RGB-D Data
Frustum PointNets for 3D Object Detection from RGB-D Data
C. Qi
Wen Liu
Chenxia Wu
Hao Su
Leonidas Guibas
3DPC
134
2,257
0
22 Nov 2017
Channel Pruning for Accelerating Very Deep Neural Networks
Channel Pruning for Accelerating Very Deep Neural Networks
Yihui He
Xiangyu Zhang
Jian Sun
194
2,519
0
19 Jul 2017
Multi-View 3D Object Detection Network for Autonomous Driving
Multi-View 3D Object Detection Network for Autonomous Driving
Xiaozhi Chen
Huimin Ma
Ji Wan
Bo Li
Tian Xia
3DPC
156
2,762
0
23 Nov 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
219
8,793
0
01 Oct 2015
1