ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08160
  4. Cited By
The Inadequacy of Shapley Values for Explainability

The Inadequacy of Shapley Values for Explainability

16 February 2023
Xuanxiang Huang
Sasha Rubin
    FAtt
ArXiv (abs)PDFHTML

Papers citing "The Inadequacy of Shapley Values for Explainability"

27 / 27 papers shown
Title
Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability
Explaining the Unexplained: Revealing Hidden Correlations for Better Interpretability
Wen-Dong Jiang
Chih-Yung Chang
Show-Jane Yen
Diptendu Sinha Roy
FAttHAI
248
1
0
02 Dec 2024
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
Explaining Quantum Circuits with Shapley Values: Towards Explainable Quantum Machine Learning
R. Heese
Thore Gerlach
Sascha Mucke
Sabine Muller
Matthias Jakobs
Nico Piatkowski
51
19
0
22 Jan 2023
Feature Necessity & Relevancy in ML Classifier Explanations
Feature Necessity & Relevancy in ML Classifier Explanations
Xuanxiang Huang
Martin C. Cooper
António Morgado
Jordi Planes
Sasha Rubin
FAtt
67
18
0
27 Oct 2022
Logic-Based Explainability in Machine Learning
Logic-Based Explainability in Machine Learning
Sasha Rubin
LRMXAI
104
40
0
24 Oct 2022
ASTERYX : A model-Agnostic SaT-basEd appRoach for sYmbolic and
  score-based eXplanations
ASTERYX : A model-Agnostic SaT-basEd appRoach for sYmbolic and score-based eXplanations
Ryma Boumazouza
Fahima Cheikh
Bertrand Mazure
Karim Tabia
45
32
0
23 Jun 2022
The Shapley Value in Machine Learning
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDIFAtt
89
211
0
11 Feb 2022
FastSHAP: Real-Time Shapley Value Estimation
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDIFAtt
102
132
0
15 Jul 2021
Rational Shapley Values
Rational Shapley Values
David S. Watson
54
20
0
18 Jun 2021
Explanations for Monotonic Classifiers
Explanations for Monotonic Classifiers
Sasha Rubin
Thomas Gerspacher
M. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
76
45
0
01 Jun 2021
XOmiVAE: an interpretable deep learning model for cancer classification
  using high-dimensional omics data
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
Eloise Withnell
Xiaoyu Zhang
Kai Sun
Yike Guo
56
66
0
26 May 2021
SAT-Based Rigorous Explanations for Decision Lists
SAT-Based Rigorous Explanations for Decision Lists
Alexey Ignatiev
Sasha Rubin
XAI
61
46
0
14 May 2021
On Guaranteed Optimal Robust Explanations for NLP Models
On Guaranteed Optimal Robust Explanations for NLP Models
Emanuele La Malfa
A. Zbrzezny
Rhiannon Michelmore
Nicola Paoletti
Marta Z. Kwiatkowska
FAtt
56
47
0
08 May 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
69
20
0
26 Apr 2021
On the Computational Intelligibility of Boolean Classifiers
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
45
58
0
13 Apr 2021
Local Explanations via Necessity and Sufficiency: Unifying Theory and
  Practice
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
56
64
0
27 Mar 2021
Improving KernelSHAP: Practical Shapley Value Estimation via Linear
  Regression
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
56
170
0
02 Dec 2020
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time
  and Delay
Explaining Naive Bayes and Other Linear Classifiers with Polynomial Time and Delay
Sasha Rubin
Thomas Gerspacher
Martin C. Cooper
Alexey Ignatiev
Nina Narodytska
FAtt
56
62
0
13 Aug 2020
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
Dylan Slack
Sophie Hilgard
Sameer Singh
Himabindu Lakkaraju
FAtt
64
161
0
11 Aug 2020
Shapley explainability on the data manifold
Shapley explainability on the data manifold
Christopher Frye
Damien de Mijolla
T. Begley
Laurence Cowton
Megan Stanley
Ilya Feige
FAttTDI
44
99
0
01 Jun 2020
Problems with Shapley-value-based explanations as feature importance
  measures
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDIFAtt
79
365
0
25 Feb 2020
On The Reasons Behind Decisions
On The Reasons Behind Decisions
Adnan Darwiche
Auguste Hirth
FaML
54
147
0
21 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
121
6,269
0
22 Oct 2019
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
61
181
0
14 Oct 2019
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
129
3,961
0
06 Feb 2018
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and
  Comparison
PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison
Randal S. Olson
William La Cava
Patryk Orzechowski
Ryan J. Urbanowicz
J. Moore
407
379
0
01 Mar 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
16,990
0
16 Feb 2016
A Knowledge Compilation Map
A Knowledge Compilation Map
Adnan Darwiche
Pierre Marquis
86
951
0
09 Jun 2011
1