Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.08117
Cited By
DDCNN: A Promising Tool for Simulation-To-Reality UAV Fault Diagnosis
16 February 2023
Wei Zhang
Shanze Wang
Junjie Tong
F. Liao
Yunfeng Zhang
Xiaoyu Shen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DDCNN: A Promising Tool for Simulation-To-Reality UAV Fault Diagnosis"
7 / 7 papers shown
Title
Simulation-to-reality UAV Fault Diagnosis with Deep Learning
Wei Zhang
Junjie Tong
F. Liao
Yunfeng Zhang
32
4
0
09 Feb 2023
Machine Learning for UAV Propeller Fault Detection based on a Hybrid Data Generation Model
J. Tong
Weinan Zhang
F. Liao
C. F. Li
Y. Zhang
23
8
0
03 Feb 2023
IPAPRec: A promising tool for learning high-performance mapless navigation skills with deep reinforcement learning
Wei Zhang
Yunfeng Zhang
Ning Liu
Kai Ren
Pengfei Wang
50
16
0
22 Mar 2021
Learn to Navigate Maplessly with Varied LiDAR Configurations: A Support Point-Based Approach
Wei Zhang
Ning Liu
Yunfeng Zhang
3DPC
59
20
0
20 Oct 2020
Deep Drone Racing: From Simulation to Reality with Domain Randomization
Antonio Loquercio
Elia Kaufmann
René Ranftl
Alexey Dosovitskiy
V. Koltun
Davide Scaramuzza
69
210
0
21 May 2019
Learning agile and dynamic motor skills for legged robots
Jemin Hwangbo
Joonho Lee
Alexey Dosovitskiy
Dario Bellicoso
Vassilios Tsounis
V. Koltun
Marco Hutter
108
1,309
0
24 Jan 2019
Virtual-to-real Deep Reinforcement Learning: Continuous Control of Mobile Robots for Mapless Navigation
L. Tai
Giuseppe Paolo
Ming-Yuan Liu
84
711
0
01 Mar 2017
1