Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.06835
Cited By
Understanding Oversquashing in GNNs through the Lens of Effective Resistance
14 February 2023
Mitchell Black
Qingsong Wang
A. Nayyeri
Yusu Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Oversquashing in GNNs through the Lens of Effective Resistance"
17 / 17 papers shown
Title
On Vanishing Gradients, Over-Smoothing, and Over-Squashing in GNNs: Bridging Recurrent and Graph Learning
Alvaro Arroyo
Alessio Gravina
Benjamin Gutteridge
Federico Barbero
Claudio Gallicchio
Xiaowen Dong
Michael M. Bronstein
P. Vandergheynst
59
8
0
15 Feb 2025
Graph Pseudotime Analysis and Neural Stochastic Differential Equations for Analyzing Retinal Degeneration Dynamics and Beyond
Dai Shi
Kuan Yan
Lequan Lin
Yue Zeng
Ting Zhang
D. Matsypura
Mark C. Gillies
Ling Zhu
Junbin Gao
70
1
0
10 Feb 2025
All You Need is Resistance: On the Equivalence of Effective Resistance and Certain Optimal Transport Problems on Graphs
Sawyer Robertson
Zhengchao Wan
Alexander Cloninger
OT
76
2
0
28 Jan 2025
Cayley Graph Propagation
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
84
6
0
04 Oct 2024
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Jonas Linkerhagner
Cheng Shi
Ivan Dokmanić
84
0
0
13 Aug 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
84
1
0
01 Jul 2024
Biharmonic Distance of Graphs and its Higher-Order Variants: Theoretical Properties with Applications to Centrality and Clustering
Mitchell Black
Lucy Lin
A. Nayyeri
Weng-Keen Wong
105
0
0
04 Jun 2024
Bundle Neural Networks for message diffusion on graphs
Jacob Bamberger
Federico Barbero
Xiaowen Dong
Michael M. Bronstein
71
2
0
24 May 2024
Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Akansha Agrawal
UQCV
107
1
0
20 May 2024
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
104
55
0
06 Oct 2022
DiffWire: Inductive Graph Rewiring via the Lovász Bound
Adrián Arnaiz-Rodríguez
Ahmed Begga
Francisco Escolano
Nuria Oliver
39
63
0
15 Jun 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
75
437
0
29 Nov 2021
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
111
802
0
16 Jul 2020
A Note on Over-Smoothing for Graph Neural Networks
Chen Cai
Yusu Wang
47
266
0
23 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
65
675
0
09 Jun 2020
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
115
7,554
0
01 Oct 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
306
3,101
0
04 Jun 2018
1