Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.05743
Cited By
Is Distance Matrix Enough for Geometric Deep Learning?
11 February 2023
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is Distance Matrix Enough for Geometric Deep Learning?"
31 / 31 papers shown
Title
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
61
2
0
04 Oct 2024
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
79
3
0
02 Jul 2024
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
108
48
0
22 Oct 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
77
480
0
15 Jun 2022
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
89
452
0
11 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
80
40
0
25 Mar 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
84
195
0
05 Feb 2022
Nested Graph Neural Networks
Muhan Zhang
Pan Li
78
167
0
25 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
101
179
0
06 Oct 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
61
135
0
11 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
86
457
0
02 Jun 2021
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
411
2,673
0
04 May 2021
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
102
1,020
0
19 Feb 2021
Topological Graph Neural Networks
Max Horn
E. Brouwer
Michael Moor
Yves Moreau
Bastian Rieck
Karsten Borgwardt
AI4CE
57
95
0
15 Feb 2021
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
104
531
0
05 Feb 2021
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
79
322
0
28 Nov 2020
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
85
83
0
06 Oct 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
151
692
0
18 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
116
430
0
16 Jun 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
122
871
0
06 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
136
1,089
0
21 Feb 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
94
313
0
14 Feb 2020
Deep Learning for 3D Point Clouds: A Survey
Yulan Guo
Hanyun Wang
Qingyong Hu
Hao Liu
Li Liu
Bennamoun
3DPC
91
1,674
0
27 Dec 2019
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
93
425
0
06 Jun 2019
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen
Soledad Villar
Lei Chen
Joan Bruna
81
281
0
29 May 2019
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
118
579
0
27 May 2019
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
192
1,634
0
04 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
238
7,642
0
01 Oct 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
83
970
0
22 Feb 2018
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
590
7,443
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
332
1,827
0
02 Mar 2017
1