ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.04832
  4. Cited By
Bridging the Sim2Real gap with CARE: Supervised Detection Adaptation
  with Conditional Alignment and Reweighting

Bridging the Sim2Real gap with CARE: Supervised Detection Adaptation with Conditional Alignment and Reweighting

9 February 2023
Viraj Prabhu
David Acuna
Andy Liao
Rafid Mahmood
M. Law
Judy Hoffman
Sanja Fidler
James Lucas
ArXivPDFHTML

Papers citing "Bridging the Sim2Real gap with CARE: Supervised Detection Adaptation with Conditional Alignment and Reweighting"

8 / 8 papers shown
Title
Global Counterfactual Directions
Global Counterfactual Directions
Bartlomiej Sobieski
P. Biecek
DiffM
58
5
0
18 Apr 2024
Text-to-Image Models for Counterfactual Explanations: a Black-Box
  Approach
Text-to-Image Models for Counterfactual Explanations: a Black-Box Approach
Guillaume Jeanneret
Loïc Simon
Frédéric Jurie
DiffM
30
12
0
14 Sep 2023
Optimizing Data Collection for Machine Learning
Optimizing Data Collection for Machine Learning
Rafid Mahmood
James Lucas
J. Álvarez
Sanja Fidler
M. Law
85
26
0
03 Oct 2022
AcroFOD: An Adaptive Method for Cross-domain Few-shot Object Detection
AcroFOD: An Adaptive Method for Cross-domain Few-shot Object Detection
Yipeng Gao
Lingxiao Yang
Yunmu Huang
Song Xie
Shiyong Li
Weihao Zheng
ObjD
53
26
0
22 Sep 2022
Unsupervised Domain Adaptation for Semantic Image Segmentation: a
  Comprehensive Survey
Unsupervised Domain Adaptation for Semantic Image Segmentation: a Comprehensive Survey
G. Csurka
Riccardo Volpi
Boris Chidlovskii
OOD
VLM
3DV
65
40
0
06 Dec 2021
Cross-Domain Adaptive Teacher for Object Detection
Cross-Domain Adaptive Teacher for Object Detection
Yu-Jhe Li
Xiaoliang Dai
Chih-Yao Ma
Yen-Cheng Liu
Kan Chen
Bichen Wu
Zijian He
Kris M. Kitani
Peter Vajda
ObjD
56
174
0
25 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
F. I. F. Richard Yu
ObjD
92
544
0
16 Mar 2020
1