ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.04129
  4. Cited By
Hyperspectral Image Compression Using Implicit Neural Representation
v1v2 (latest)

Hyperspectral Image Compression Using Implicit Neural Representation

8 February 2023
Shima Rezasoltani
Faisal Z. Qureshi
ArXiv (abs)PDFHTML

Papers citing "Hyperspectral Image Compression Using Implicit Neural Representation"

16 / 16 papers shown
Title
COIN: COmpression with Implicit Neural representations
COIN: COmpression with Implicit Neural representations
Emilien Dupont
Adam Goliñski
Milad Alizadeh
Yee Whye Teh
Arnaud Doucet
76
226
0
03 Mar 2021
Overfitting for Fun and Profit: Instance-Adaptive Data Compression
Overfitting for Fun and Profit: Instance-Adaptive Data Compression
T. V. Rozendaal
Iris A. M. Huijben
Taco S. Cohen
68
47
0
21 Jan 2021
Fourier Features Let Networks Learn High Frequency Functions in Low
  Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
124
2,440
0
18 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
165
2,571
0
17 Jun 2020
Improving Inference for Neural Image Compression
Improving Inference for Neural Image Compression
Yibo Yang
Robert Bamler
Stephan Mandt
85
123
0
07 Jun 2020
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
B. Mildenhall
Pratul P. Srinivasan
Matthew Tancik
Jonathan T. Barron
R. Ramamoorthi
Ren Ng
129
2,592
0
19 Mar 2020
Content Adaptive Optimization for Neural Image Compression
Content Adaptive Optimization for Neural Image Compression
Joaquim Campos
Simon Meierhans
Abdelaziz Djelouah
Christopher Schroers
52
65
0
04 Jun 2019
The Convergence Rate of Neural Networks for Learned Functions of
  Different Frequencies
The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies
Ronen Basri
David Jacobs
Yoni Kasten
S. Kritchman
78
218
0
02 Jun 2019
DeepSDF: Learning Continuous Signed Distance Functions for Shape
  Representation
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
Jeong Joon Park
Peter R. Florence
Julian Straub
Richard Newcombe
S. Lovegrove
3DV
133
3,705
0
16 Jan 2019
Learning Implicit Fields for Generative Shape Modeling
Learning Implicit Fields for Generative Shape Modeling
Zhiqin Chen
Hao Zhang
AI4CE3DV
150
1,638
0
06 Dec 2018
Joint Autoregressive and Hierarchical Priors for Learned Image
  Compression
Joint Autoregressive and Hierarchical Priors for Learned Image Compression
David C. Minnen
Johannes Ballé
G. Toderici
79
1,278
0
08 Sep 2018
Iterative Amortized Inference
Iterative Amortized Inference
Joseph Marino
Yisong Yue
Stephan Mandt
BDLDRL
73
168
0
24 Jul 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDLDRL
142
243
0
07 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRLBDL
135
283
0
10 Jan 2018
On the challenges of learning with inference networks on sparse,
  high-dimensional data
On the challenges of learning with inference networks on sparse, high-dimensional data
Rahul G. Krishnan
Dawen Liang
Matthew Hoffman
CMLBDL
79
85
0
17 Oct 2017
End-to-end Optimized Image Compression
End-to-end Optimized Image Compression
Johannes Ballé
Valero Laparra
Eero P. Simoncelli
DRL
98
1,713
0
05 Nov 2016
1