Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.02804
Cited By
Stop overkilling simple tasks with black-box models and use transparent models instead
6 February 2023
Matteo Rizzo
Matteo Marcuzzo
A. Zangari
A. Gasparetto
A. Albarelli
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stop overkilling simple tasks with black-box models and use transparent models instead"
18 / 18 papers shown
Title
A Theoretical Framework for AI Models Explainability with Application in Biomedicine
Matteo Rizzo
Alberto Veneri
A. Albarelli
Claudio Lucchese
Marco Nobile
Cristina Conati
XAI
49
9
0
29 Dec 2022
Fruit Ripeness Classification: a Survey
Matteo Rizzo
Matteo Marcuzzo
A. Zangari
A. Gasparetto
A. Albarelli
55
64
0
29 Dec 2022
What does LIME really see in images?
Damien Garreau
Dina Mardaoui
FAtt
32
38
0
11 Feb 2021
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
W. Fedus
Barret Zoph
Noam M. Shazeer
MoE
55
2,136
0
11 Jan 2021
Transformers in Vision: A Survey
Salman Khan
Muzammal Naseer
Munawar Hayat
Syed Waqas Zamir
Fahad Shahbaz Khan
M. Shah
ViT
247
2,463
0
04 Jan 2021
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition
Meike Nauta
Annemarie Jutte
Jesper C. Provoost
C. Seifert
FAtt
39
65
0
05 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
342
40,217
0
22 Oct 2020
Is Attention Interpretable?
Sofia Serrano
Noah A. Smith
75
679
0
09 Jun 2019
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
107
1,947
0
08 Oct 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
175
1,172
0
27 Jun 2018
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
139
679
0
26 Nov 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
435
129,831
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
524
21,613
0
22 May 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
209
19,796
0
07 Oct 2016
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
846
14,493
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
577
16,828
0
16 Feb 2016
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
383
27,205
0
01 Sep 2014
Rigid-Motion Scattering for Texture Classification
Laurent Sifre
S. Mallat
48
345
0
07 Mar 2014
1