ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01098
  4. Cited By
A general Markov decision process formalism for action-state
  entropy-regularized reward maximization

A general Markov decision process formalism for action-state entropy-regularized reward maximization

2 February 2023
D. Grytskyy
Jorge Ramírez-Ruiz
R. Moreno-Bote
ArXivPDFHTML

Papers citing "A general Markov decision process formalism for action-state entropy-regularized reward maximization"

23 / 23 papers shown
Title
An information-theoretic perspective on intrinsic motivation in
  reinforcement learning: a survey
An information-theoretic perspective on intrinsic motivation in reinforcement learning: a survey
A. Aubret
L. Matignon
S. Hassas
77
36
0
19 Sep 2022
Complex behavior from intrinsic motivation to occupy action-state path
  space
Complex behavior from intrinsic motivation to occupy action-state path space
Jorge Ramírez-Ruiz
D. Grytskyy
Chiara Mastrogiuseppe
Yamen Habib
R. Moreno-Bote
71
7
0
20 May 2022
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Maximum Entropy RL (Provably) Solves Some Robust RL Problems
Benjamin Eysenbach
Sergey Levine
OOD
67
181
0
10 Mar 2021
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
44
52
0
03 Sep 2020
Deep active inference agents using Monte-Carlo methods
Deep active inference agents using Monte-Carlo methods
Zafeirios Fountas
Noor Sajid
P. Mediano
Karl J. Friston
50
103
0
07 Jun 2020
Reward-Free Exploration for Reinforcement Learning
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
153
194
0
07 Feb 2020
Efficient Exploration via State Marginal Matching
Efficient Exploration via State Marginal Matching
Lisa Lee
Benjamin Eysenbach
Emilio Parisotto
Eric Xing
Sergey Levine
Ruslan Salakhutdinov
99
242
0
12 Jun 2019
Information asymmetry in KL-regularized RL
Information asymmetry in KL-regularized RL
Alexandre Galashov
Siddhant M. Jayakumar
Leonard Hasenclever
Dhruva Tirumala
Jonathan Richard Schwarz
Guillaume Desjardins
Wojciech M. Czarnecki
Yee Whye Teh
Razvan Pascanu
N. Heess
OffRL
39
102
0
03 May 2019
Provably Efficient Maximum Entropy Exploration
Provably Efficient Maximum Entropy Exploration
Elad Hazan
Sham Kakade
Karan Singh
A. V. Soest
57
295
0
06 Dec 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
105
1,310
0
30 Oct 2018
Large-Scale Study of Curiosity-Driven Learning
Large-Scale Study of Curiosity-Driven Learning
Yuri Burda
Harrison Edwards
Deepak Pathak
Amos Storkey
Trevor Darrell
Alexei A. Efros
LRM
54
700
0
13 Aug 2018
Diversity is All You Need: Learning Skills without a Reward Function
Diversity is All You Need: Learning Skills without a Reward Function
Benjamin Eysenbach
Abhishek Gupta
Julian Ibarz
Sergey Levine
73
1,075
0
16 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
231
8,236
0
04 Jan 2018
A unified view of entropy-regularized Markov decision processes
A unified view of entropy-regularized Markov decision processes
Gergely Neu
Anders Jonsson
Vicencc Gómez
88
255
0
22 May 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
99
2,423
0
15 May 2017
Equivalence Between Policy Gradients and Soft Q-Learning
Equivalence Between Policy Gradients and Soft Q-Learning
John Schulman
Xi Chen
Pieter Abbeel
OffRL
66
344
0
21 Apr 2017
Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
Joshua Achiam
S. Shankar Sastry
66
236
0
06 Mar 2017
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum
Mohammad Norouzi
Kelvin Xu
Dale Schuurmans
123
470
0
28 Feb 2017
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
84
764
0
15 Nov 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
162
1,465
0
06 Jun 2016
Variational Information Maximisation for Intrinsically Motivated
  Reinforcement Learning
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning
S. Mohamed
Danilo Jimenez Rezende
DRL
SSL
60
400
0
29 Sep 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
247
6,722
0
19 Feb 2015
Empowerment for Continuous Agent-Environment Systems
Empowerment for Continuous Agent-Environment Systems
T. Jung
Daniel Polani
Peter Stone
48
99
0
31 Jan 2012
1