Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.00775
Cited By
Model Monitoring and Robustness of In-Use Machine Learning Models: Quantifying Data Distribution Shifts Using Population Stability Index
1 February 2023
A. Khademi
M. Hopka
Devesh Upadhyay
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model Monitoring and Robustness of In-Use Machine Learning Models: Quantifying Data Distribution Shifts Using Population Stability Index"
19 / 19 papers shown
Title
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Nikolaj Thams
Michael Oberst
David Sontag
OOD
63
12
0
31 May 2022
Anomaly Detection in Autonomous Driving: A Survey
Daniel Bogdoll
Maximilian Nitsche
J. Marius Zöllner
55
121
0
17 Apr 2022
Leveraging Unlabeled Data to Predict Out-of-Distribution Performance
Saurabh Garg
Sivaraman Balakrishnan
Zachary Chase Lipton
Behnam Neyshabur
Hanie Sedghi
OODD
OOD
62
128
0
11 Jan 2022
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
119
724
0
04 Sep 2021
Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization
John Miller
Rohan Taori
Aditi Raghunathan
Shiori Sagawa
Pang Wei Koh
Vaishaal Shankar
Percy Liang
Y. Carmon
Ludwig Schmidt
OODD
OOD
67
276
0
09 Jul 2021
Predicting with Confidence on Unseen Distributions
Devin Guillory
Vaishaal Shankar
Sayna Ebrahimi
Trevor Darrell
Ludwig Schmidt
UQCV
OOD
48
121
0
07 Jul 2021
Partial success in closing the gap between human and machine vision
Robert Geirhos
Kantharaju Narayanappa
Benjamin Mitzkus
Tizian Thieringer
Matthias Bethge
Felix Wichmann
Wieland Brendel
VLM
AAML
69
229
0
14 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
38
218
0
26 May 2021
Unadversarial Examples: Designing Objects for Robust Vision
Hadi Salman
Andrew Ilyas
Logan Engstrom
Sai H. Vemprala
Aleksander Madry
Ashish Kapoor
WIGM
100
59
0
22 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
172
1,428
0
14 Dec 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
99
985
0
16 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
108
546
0
01 Jul 2020
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos
P. Tigas
R. McAllister
Nicholas Rhinehart
Sergey Levine
Y. Gal
46
187
0
26 Jun 2020
Adversarial Machine Learning -- Industry Perspectives
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
AAML
SILM
87
235
0
04 Feb 2020
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
159
1,691
0
06 Jun 2019
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects
Michael A. Alcorn
Melvin Johnson
Zhitao Gong
Chengfei Wang
Long Mai
Naveen Ari
Stella Laurenzo
82
298
0
28 Nov 2018
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
54
367
0
29 Oct 2018
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
452
43,277
0
11 Feb 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
269
19,045
0
20 Dec 2014
1