Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.00064
Cited By
Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour
31 January 2023
Rhys Howard
Lars Kunze
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Evaluating Temporal Observation-Based Causal Discovery Techniques Applied to Road Driver Behaviour"
11 / 11 papers shown
Title
Causal Discovery from Conditionally Stationary Time Series
Carles Balsells-Rodas
Ruibo Tu
Tanmayee Narendra
Yingzhen Li
Gabriele Schweikert
Hedvig Kjellström
Yingzhen Li
AI4TS
BDL
CML
126
6
0
12 Oct 2021
Neural Additive Vector Autoregression Models for Causal Discovery in Time Series
Bart Bussmann
Jannes Nys
Steven Latré
CML
BDL
35
25
0
19 Oct 2020
One Thousand and One Hours: Self-driving Motion Prediction Dataset
J. Houston
G. Zuidhof
Luca Bergamini
Yawei Ye
Long Chen
Ashesh Jain
Sammy Omari
V. Iglovikov
Peter Ondruska
87
367
0
25 Jun 2020
Who Make Drivers Stop? Towards Driver-centric Risk Assessment: Risk Object Identification via Causal Inference
Chengxi Li
Stanley H. Chan
Yi-Ting Chen
CML
134
51
0
05 Mar 2020
CLEVRER: CoLlision Events for Video REpresentation and Reasoning
Kexin Yi
Yuta Saito
Yunzhu Li
Pushmeet Kohli
Jiajun Wu
Antonio Torralba
J. Tenenbaum
NAI
118
473
0
03 Oct 2019
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models
Erdun Gao
Kun Zhang
Biwei Huang
Clark Glymour
CML
AI4TS
62
64
0
26 May 2019
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
Erdun Gao
Kun Zhang
Jiji Zhang
Joseph Ramsey
Ruben Sanchez-Romero
Clark Glymour
Bernhard Schölkopf
62
228
0
05 Mar 2019
The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems
R. Krajewski
Julian Bock
Laurent Kloeker
L. Eckstein
82
994
0
11 Oct 2018
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
115
3,982
0
27 Feb 2013
Kernel-based Conditional Independence Test and Application in Causal Discovery
Kun Zhang
J. Peters
Dominik Janzing
Bernhard Schölkopf
BDL
CML
102
629
0
14 Feb 2012
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
102
511
0
13 Jan 2011
1