Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.13368
Cited By
v1
v2 (latest)
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
31 January 2023
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference"
38 / 38 papers shown
Title
Learning Robust Statistics for Simulation-based Inference under Model Misspecification
Daolang Huang
Ayush Bharti
Amauri Souza
Luigi Acerbi
Samuel Kaski
93
35
0
25 May 2023
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
177
220
0
09 May 2023
Bayesian score calibration for approximate models
Joshua J. Bon
D. Warne
David J. Nott
Christopher C. Drovandi
54
3
0
10 Nov 2022
Investigating the Impact of Model Misspecification in Neural Simulation-based Inference
Patrick W Cannon
Daniel Ward
Sebastian M. Schmon
76
36
0
05 Sep 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
74
45
0
09 Feb 2022
Learning Summary Statistics for Bayesian Inference with Autoencoders
Carlo Albert
S. Ulzega
Firat Ozdemir
Fernando Perez-Cruz
Antonietta Mira
BDL
74
13
0
28 Jan 2022
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
51
16
0
26 Oct 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
60
79
0
15 Apr 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
415
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
259
198
0
12 Jan 2021
Score Matched Neural Exponential Families for Likelihood-Free Inference
Lorenzo Pacchiardi
Ritabrata Dutta
171
28
0
20 Dec 2020
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
76
29
0
30 Nov 2020
Generalized Posteriors in Approximate Bayesian Computation
Sebastian M. Schmon
Patrick W Cannon
Jeremias Knoblauch
88
25
0
17 Nov 2020
Sharpness-Aware Minimization for Efficiently Improving Generalization
Pierre Foret
Ariel Kleiner
H. Mobahi
Behnam Neyshabur
AAML
199
1,358
0
03 Oct 2020
Robust Approximate Bayesian Computation: An Adjustment Approach
David T. Frazier
Christopher C. Drovandi
Rubén Loaiza-Maya
45
13
0
07 Aug 2020
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
290
197
0
13 Mar 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
211
124
0
10 Feb 2020
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
61
360
0
24 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
209
1,713
0
05 Dec 2019
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
190
854
0
04 Nov 2019
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
161
75
0
29 Sep 2019
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
387
331
0
17 May 2019
Robust Approximate Bayesian Inference with Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
48
45
0
09 Apr 2019
Rank-normalization, folding, and localization: An improved
R
^
\widehat{R}
R
for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
52
940
0
19 Mar 2019
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
158
1,057
0
18 Oct 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
533
370
0
18 May 2018
ELFI: Engine for Likelihood-Free Inference
Jarno Lintusaari
H. Vuollekoski
A. Kangasrääsiö
Kusti Skytén
Marko Jarvenpaa
Pekka Marttinen
Michael U. Gutmann
Aki Vehtari
J. Corander
Samuel Kaski
55
73
0
02 Aug 2017
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
215
1,360
0
19 May 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
842
5,841
0
05 Dec 2016
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
190
151
0
30 Nov 2016
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
163
405
0
20 Oct 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
168
3,472
0
07 Oct 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
168
2,816
0
20 Feb 2015
The Rate of Convergence for Approximate Bayesian Computation
Stuart Barber
J. Voss
M. Webster
63
80
0
08 Nov 2013
A General Framework for Updating Belief Distributions
Pier Giovanni Bissiri
Chris Holmes
S. Walker
225
479
0
27 Jun 2013
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
169
4,309
0
18 Nov 2011
Relevant statistics for Bayesian model choice
Jean-Michel Marin
N. Pillai
Christian P. Robert
Judith Rousseau
83
144
0
21 Oct 2011
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
184
895
0
31 Mar 2009
1