Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.11674
Cited By
v1
v2
v3
v4 (latest)
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
27 January 2023
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference"
47 / 47 papers shown
Title
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
Siu Lun Chau
F. Briol
Krikamol Muandet
70
0
0
26 May 2025
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
74
45
0
09 Feb 2022
Approximate Bayesian Computation with Domain Expert in the Loop
Ayush Bharti
Louis Filstroff
Samuel Kaski
TPM
103
9
0
28 Jan 2022
ProbNum: Probabilistic Numerics in Python
Jonathan Wenger
Nicholas Kramer
Marvin Pfortner
Jonathan Schmidt
Nathanael Bosch
...
A. Gessner
Toni Karvonen
F. Briol
Maren Mahsereci
Philipp Hennig
89
17
0
03 Dec 2021
Composite Goodness-of-fit Tests with Kernels
Oscar Key
Arthur Gretton
F. Briol
T. Fernandez
86
16
0
19 Nov 2021
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
68
13
0
22 Jun 2021
Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
168
39
0
12 May 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
415
33
0
12 Feb 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
259
198
0
12 Jan 2021
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
76
16
0
01 Jun 2020
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
62
47
0
08 May 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
65
56
0
29 Jan 2020
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
190
854
0
04 Nov 2019
MMD-Bayes: Robust Bayesian Estimation via Maximum Mean Discrepancy
Badr-Eddine Chérief-Abdellatif
Pierre Alquier
161
75
0
29 Sep 2019
Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems
A. Teckentrup
42
67
0
31 Aug 2019
Kernel quadrature with DPPs
Ayoub Belhadji
Rémi Bardenet
P. Chainais
65
41
0
18 Jun 2019
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
53
72
0
13 Jun 2019
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
387
331
0
17 May 2019
Approximate Bayesian computation via the energy statistic
Hien Nguyen
Julyan Arbel
Hongliang Lü
F. Forbes
87
29
0
14 May 2019
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
81
57
0
09 May 2019
Sample Complexity of Sinkhorn divergences
Aude Genevay
Lénaïc Chizat
Francis R. Bach
Marco Cuturi
Gabriel Peyré
OT
77
289
0
05 Oct 2018
Symmetry Exploits for Bayesian Cubature Methods
Toni Karvonen
Simo Särkkä
Chris J. Oates
36
15
0
26 Sep 2018
Fast Automatic Bayesian Cubature Using Lattice Sampling
R. Jagadeeswaran
F. J. Hickernell
30
36
0
26 Sep 2018
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
71
102
0
27 Mar 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
70
13
0
23 Feb 2018
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
Arthur Gretton
EGVM
174
1,500
0
04 Jan 2018
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
Motonobu Kanagawa
Bharath K. Sriperumbudur
Kenji Fukumizu
83
45
0
01 Sep 2017
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
190
631
0
01 Jun 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
724
0
24 May 2017
Support points
Simon Mak
V. R. Joseph
51
141
0
07 Sep 2016
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
120
66
0
31 May 2016
DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression
Jovana Mitrović
Dino Sejdinovic
Yee Whye Teh
BDL
26
33
0
15 Feb 2016
Probabilistic Integration: A Role in Statistical Computation?
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
Dino Sejdinovic
62
53
0
03 Dec 2015
Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees
François‐Xavier Briol
Chris J. Oates
Mark Girolami
Michael A. Osborne
91
90
0
08 Jun 2015
Training generative neural networks via Maximum Mean Discrepancy optimization
Gintare Karolina Dziugaite
Daniel M. Roy
Zoubin Ghahramani
GAN
84
530
0
14 May 2015
Approximate Bayesian Computation for Forward Modeling in Cosmology
Joel Akeret
Alexandre Réfrégier
A. Amara
Sebastian Seehars
C. Hasner
47
90
0
27 Apr 2015
Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model
Jingjing Li
David J. Nott
Yanan Fan
Scott A. Sisson
174
42
0
16 Apr 2015
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
116
847
0
10 Feb 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
167
288
0
14 Jan 2015
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature
Tom Gunter
Michael A. Osborne
Roman Garnett
Philipp Hennig
Stephen J. Roberts
TPM
64
104
0
03 Nov 2014
Likelihood-free inference via classification
Michael U. Gutmann
Ritabrata Dutta
Samuel Kaski
J. Corander
186
63
0
18 Jul 2014
On the Equivalence between Herding and Conditional Gradient Algorithms
Francis R. Bach
Simon Lacoste-Julien
G. Obozinski
182
169
0
20 Mar 2012
Super-Samples from Kernel Herding
Yutian Chen
Max Welling
Alex Smola
167
342
0
15 Mar 2012
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
234
866
0
05 Jan 2011
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
217
747
0
30 Jul 2009
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
233
2,365
0
15 May 2008
Adaptive approximate Bayesian computation
Mark Beaumont
J. Cornuet
Jean-Michel Marin
Christian P. Robert
203
646
0
15 May 2008
1