Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.11039
Cited By
WL meet VC
26 January 2023
Christopher Morris
Floris Geerts
Jan Tönshoff
Martin Grohe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"WL meet VC"
15 / 15 papers shown
Title
Graph Representational Learning: When Does More Expressivity Hurt Generalization?
Sohir Maskey
Raffaele Paolino
Fabian Jogl
Gitta Kutyniok
Johannes F. Lutzeyer
31
0
0
16 May 2025
Efficient Link Prediction via GNN Layers Induced by Negative Sampling
Yuxin Wang
Xiannian Hu
Quan Gan
Xuanjing Huang
Xipeng Qiu
David Wipf
65
4
0
31 Dec 2024
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
69
11
0
05 Jun 2023
A graphon-signal analysis of graph neural networks
Ron Levie
56
18
0
25 May 2023
The Descriptive Complexity of Graph Neural Networks
Martin Grohe
GNN
44
24
0
08 Mar 2023
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
84
48
0
22 Oct 2022
Generalization Analysis of Message Passing Neural Networks on Large Random Graphs
Sohir Maskey
Ron Levie
Yunseok Lee
Gitta Kutyniok
GNN
85
54
0
01 Feb 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
105
47
0
30 Jan 2022
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
134
78
0
01 Oct 2021
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
174
127
0
17 Oct 2020
The expressive power of kth-order invariant graph networks
Floris Geerts
133
37
0
23 Jul 2020
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
103
40
0
03 May 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
284
1,956
0
09 Jun 2018
Convolutional Neural Network Architectures for Signals Supported on Graphs
Fernando Gama
A. Marques
G. Leus
Alejandro Ribeiro
144
286
0
01 May 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
263
1,812
0
25 Nov 2016
1