ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.06962
  4. Cited By
Long Range Pooling for 3D Large-Scale Scene Understanding

Long Range Pooling for 3D Large-Scale Scene Understanding

17 January 2023
Xiang-Li Li
Meng-Hao Guo
Tai-Jiang Mu
Ralph Robert Martin
Shiyong Hu
    3DV3DPC
ArXiv (abs)PDFHTML

Papers citing "Long Range Pooling for 3D Large-Scale Scene Understanding"

15 / 65 papers shown
Title
PointCNN: Convolution On $\mathcal{X}$-Transformed Points
PointCNN: Convolution On X\mathcal{X}X-Transformed Points
Yangyan Li
Rui Bu
Mingchao Sun
Wei Wu
Xinhan Di
Baoquan Chen
3DPC
235
2,450
0
23 Jan 2018
ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for
  3D Scans
ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans
Angela Dai
Daniel E. Ritchie
M. Bokeloh
Scott E. Reed
Jürgen Sturm
Matthias Nießner
3DV
77
296
0
29 Dec 2017
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Benjamin Graham
Martin Engelcke
Laurens van der Maaten
3DPC
108
1,517
0
28 Nov 2017
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
Loic Landrieu
M. Simonovsky
GNN3DPC
193
1,256
0
27 Nov 2017
SEGCloud: Semantic Segmentation of 3D Point Clouds
SEGCloud: Semantic Segmentation of 3D Point Clouds
Lyne P. Tchapmi
Chris Choy
Iro Armeni
JunYoung Gwak
Silvio Savarese
3DPC
67
754
0
20 Oct 2017
Matterport3D: Learning from RGB-D Data in Indoor Environments
Matterport3D: Learning from RGB-D Data in Indoor Environments
Angel X. Chang
Angela Dai
Thomas Funkhouser
Maciej Halber
Matthias Nießner
Manolis Savva
Shuran Song
Andy Zeng
Yinda Zhang
3DV3DPC
202
1,916
0
18 Sep 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
730
132,363
0
12 Jun 2017
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric
  Space
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
C. Qi
L. Yi
Hao Su
Leonidas Guibas
3DPC3DV
366
11,142
0
07 Jun 2017
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
Angela Dai
Angel X. Chang
Manolis Savva
Maciej Halber
Thomas Funkhouser
Matthias Nießner
3DPC3DV
489
4,081
0
14 Feb 2017
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
102
1,799
0
15 Jan 2017
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas Guibas
3DH3DPC3DVPINN
493
14,360
0
02 Dec 2016
OctNet: Learning Deep 3D Representations at High Resolutions
OctNet: Learning Deep 3D Representations at High Resolutions
Gernot Riegler
Ali O. Ulusoy
Andreas Geiger
3DV3DPC
225
1,480
0
15 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Multi-view Convolutional Neural Networks for 3D Shape Recognition
Multi-view Convolutional Neural Networks for 3D Shape Recognition
Hang Su
Subhransu Maji
E. Kalogerakis
Erik Learned-Miller
3DV
162
3,220
0
05 May 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
Previous
12