ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12809
  4. Cited By
Understanding the Complexity Gains of Single-Task RL with a Curriculum
v1v2v3 (latest)

Understanding the Complexity Gains of Single-Task RL with a Curriculum

24 December 2022
Qiyang Li
Yuexiang Zhai
Yi-An Ma
Sergey Levine
ArXiv (abs)PDFHTML

Papers citing "Understanding the Complexity Gains of Single-Task RL with a Curriculum"

31 / 81 papers shown
Title
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
145
2,453
0
13 Dec 2018
Unsupervised Control Through Non-Parametric Discriminative Rewards
Unsupervised Control Through Non-Parametric Discriminative Rewards
David Warde-Farley
T. Wiele
Tejas D. Kulkarni
Catalin Ionescu
Steven Hansen
Volodymyr Mnih
DRLOffRLSSL
96
178
0
28 Nov 2018
Learning Goal Embeddings via Self-Play for Hierarchical Reinforcement
  Learning
Learning Goal Embeddings via Self-Play for Hierarchical Reinforcement Learning
Sainbayar Sukhbaatar
Emily L. Denton
Arthur Szlam
Rob Fergus
SSL
78
43
0
22 Nov 2018
Policy Certificates: Towards Accountable Reinforcement Learning
Policy Certificates: Towards Accountable Reinforcement Learning
Christoph Dann
Ashutosh Adhikari
Wei Wei
Jimmy J. Lin
OffRL
132
146
0
07 Nov 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
161
1,345
0
30 Oct 2018
Visual Reinforcement Learning with Imagined Goals
Visual Reinforcement Learning with Imagined Goals
Ashvin Nair
Vitchyr H. Pong
Murtaza Dalal
Shikhar Bahl
Steven Lin
Sergey Levine
SSL
89
544
0
12 Jul 2018
Is Q-learning Provably Efficient?
Is Q-learning Provably Efficient?
Chi Jin
Zeyuan Allen-Zhu
Sébastien Bubeck
Michael I. Jordan
OffRL
81
812
0
10 Jul 2018
BaRC: Backward Reachability Curriculum for Robotic Reinforcement
  Learning
BaRC: Backward Reachability Curriculum for Robotic Reinforcement Learning
Boris Ivanovic
James Harrison
Apoorva Sharma
Mo Chen
Marco Pavone
OffRL
90
57
0
16 Jun 2018
Variational Inverse Control with Events: A General Framework for
  Data-Driven Reward Definition
Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition
Justin Fu
Avi Singh
Dibya Ghosh
Larry Yang
Sergey Levine
BDL
55
125
0
29 May 2018
Learning to Teach in Cooperative Multiagent Reinforcement Learning
Learning to Teach in Cooperative Multiagent Reinforcement Learning
Shayegan Omidshafiei
Dong-Ki Kim
Miao Liu
Gerald Tesauro
Matthew D Riemer
Chris Amato
Murray Campbell
Jonathan P. How
55
136
0
20 May 2018
Global Convergence of Policy Gradient Methods for the Linear Quadratic
  Regulator
Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator
Maryam Fazel
Rong Ge
Sham Kakade
M. Mesbahi
100
610
0
15 Jan 2018
Markov Decision Processes with Continuous Side Information
Markov Decision Processes with Continuous Side Information
Aditya Modi
Nan Jiang
Satinder Singh
Ambuj Tewari
OffRL
66
62
0
15 Nov 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
550
19,296
0
20 Jul 2017
Reverse Curriculum Generation for Reinforcement Learning
Reverse Curriculum Generation for Reinforcement Learning
Carlos Florensa
David Held
Markus Wulfmeier
Michael Zhang
Pieter Abbeel
99
445
0
17 Jul 2017
Hindsight Experience Replay
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
282
2,339
0
05 Jul 2017
Automatic Goal Generation for Reinforcement Learning Agents
Automatic Goal Generation for Reinforcement Learning Agents
Carlos Florensa
David Held
Xinyang Geng
Pieter Abbeel
111
515
0
17 May 2017
Minimax Regret Bounds for Reinforcement Learning
Minimax Regret Bounds for Reinforcement Learning
M. G. Azar
Ian Osband
Rémi Munos
95
778
0
16 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
833
11,952
0
09 Mar 2017
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum
Mohammad Norouzi
Kelvin Xu
Dale Schuurmans
171
476
0
28 Feb 2017
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
111
775
0
15 Nov 2016
Modular Multitask Reinforcement Learning with Policy Sketches
Modular Multitask Reinforcement Learning with Policy Sketches
Jacob Andreas
Dan Klein
Sergey Levine
OffRL
177
463
0
06 Nov 2016
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Nan Jiang
A. Krishnamurthy
Alekh Agarwal
John Langford
Robert Schapire
156
421
0
29 Oct 2016
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
EPOpt: Learning Robust Neural Network Policies Using Model Ensembles
Aravind Rajeswaran
Sarvjeet Ghotra
Balaraman Ravindran
Sergey Levine
205
353
0
05 Oct 2016
Deep Successor Reinforcement Learning
Deep Successor Reinforcement Learning
Tejas D. Kulkarni
A. Saeedi
Simanta Gautam
S. Gershman
74
209
0
08 Jun 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
186
1,484
0
06 Jun 2016
Policy Distillation
Policy Distillation
Andrei A. Rusu
Sergio Gomez Colmenarejo
Çağlar Gülçehre
Guillaume Desjardins
J. Kirkpatrick
Razvan Pascanu
Volodymyr Mnih
Koray Kavukcuoglu
R. Hadsell
100
696
0
19 Nov 2015
Incentivizing Exploration In Reinforcement Learning With Deep Predictive
  Models
Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models
Bradly C. Stadie
Sergey Levine
Pieter Abbeel
95
505
0
03 Jul 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
281
6,801
0
19 Feb 2015
Contextual Markov Decision Processes
Contextual Markov Decision Processes
Assaf Hallak
Dotan Di Castro
Shie Mannor
89
248
0
08 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Online learning in MDPs with side information
Online learning in MDPs with side information
Yasin Abbasi-Yadkori
Gergely Neu
OffRL
61
18
0
26 Jun 2014
Previous
12