Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.12499
Cited By
Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging
23 December 2022
Dominik Narnhofer
Andreas Habring
M. Holler
Thomas Pock
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging"
29 / 29 papers shown
Title
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
82
0
0
03 Feb 2025
FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
L. Bogensperger
Dominik Narnhofer
Alexander Falk
Konrad Schindler
Thomas Pock
MedIm
142
3
0
28 May 2024
Conformal Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Adam Fisch
Lihua Lei
Tal Schuster
122
132
0
04 Aug 2022
Computed Tomography Reconstruction using Generative Energy-Based Priors
Martin Zach
Erich Kobler
Thomas Pock
DiffM
MedIm
27
12
0
23 Mar 2022
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging
Anastasios Nikolas Angelopoulos
Amit Kohli
Stephen Bates
Michael I. Jordan
Jitendra Malik
Thayer Alshaabi
Srigokul Upadhyayula
Yaniv Romano
UQCV
OOD
66
94
0
10 Feb 2022
Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Tim Dockhorn
Arash Vahdat
Karsten Kreis
DiffM
71
231
0
14 Dec 2021
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
184
129
0
03 Oct 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
41
111
0
08 Mar 2021
Distribution-Free Conditional Median Inference
Dhruv Medarametla
Emmanuel J. Candès
47
15
0
16 Feb 2021
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction
Dominik Narnhofer
Alexander Effland
Erich Kobler
Kerstin Hammernik
Florian Knoll
Thomas Pock
UQCV
BDL
40
50
0
12 Feb 2021
Distribution-Free, Risk-Controlling Prediction Sets
Stephen Bates
Anastasios Nikolas Angelopoulos
Lihua Lei
Jitendra Malik
Michael I. Jordan
OOD
232
193
0
07 Jan 2021
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems
Zaccharie Ramzi
B. Remy
F. Lanusse
Jean-Luc Starck
P. Ciuciu
UQCV
MedIm
58
14
0
16 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
190
1,893
0
12 Nov 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
163
3,803
0
12 Jul 2019
Conformalized Quantile Regression
Yaniv Romano
Evan Patterson
Emmanuel J. Candès
229
603
0
08 May 2019
MoDL: Model Based Deep Learning Architecture for Inverse Problems
H. Aggarwal
M. Mani
M. Jacob
108
1,013
0
07 Dec 2017
Learning a Variational Network for Reconstruction of Accelerated MRI Data
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
M. Recht
D. Sodickson
Thomas Pock
Florian Knoll
43
1,535
0
03 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
269
4,667
0
15 Mar 2017
Compressed Sensing using Generative Models
Ashish Bora
A. Jalal
Eric Price
A. Dimakis
92
804
0
09 Mar 2017
Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau
Alain Durmus
Eric Moulines
Marcelo Pereyra
51
176
0
22 Dec 2016
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
229
10,646
0
15 Sep 2016
Least Ambiguous Set-Valued Classifiers with Bounded Error Levels
Mauricio Sadinle
Jing Lei
Larry A. Wasserman
110
239
0
02 Sep 2016
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
71
352
0
05 May 2016
Distribution-Free Predictive Inference For Regression
Jing Lei
M. G'Sell
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
198
832
0
14 Apr 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
470
9,233
0
06 Jun 2015
Insights into analysis operator learning: From patch-based sparse models to higher-order MRFs
Yunjin Chen
René Ranftl
Thomas Pock
46
114
0
13 Jan 2014
Proximal Markov chain Monte Carlo algorithms
Marcelo Pereyra
56
178
0
02 Jun 2013
A Conformal Prediction Approach to Explore Functional Data
Jing Lei
Alessandro Rinaldo
Larry A. Wasserman
115
128
0
26 Feb 2013
A tutorial on conformal prediction
Glenn Shafer
V. Vovk
257
1,122
0
21 Jun 2007
1