ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.12499
  4. Cited By
Posterior-Variance-Based Error Quantification for Inverse Problems in
  Imaging

Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging

23 December 2022
Dominik Narnhofer
Andreas Habring
M. Holler
Thomas Pock
ArXivPDFHTML

Papers citing "Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging"

29 / 29 papers shown
Title
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
82
0
0
03 Feb 2025
FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
L. Bogensperger
Dominik Narnhofer
Alexander Falk
Konrad Schindler
Thomas Pock
MedIm
142
3
0
28 May 2024
Conformal Risk Control
Conformal Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Adam Fisch
Lihua Lei
Tal Schuster
122
132
0
04 Aug 2022
Computed Tomography Reconstruction using Generative Energy-Based Priors
Computed Tomography Reconstruction using Generative Energy-Based Priors
Martin Zach
Erich Kobler
Thomas Pock
DiffM
MedIm
27
12
0
23 Mar 2022
Image-to-Image Regression with Distribution-Free Uncertainty
  Quantification and Applications in Imaging
Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging
Anastasios Nikolas Angelopoulos
Amit Kohli
Stephen Bates
Michael I. Jordan
Jitendra Malik
Thayer Alshaabi
Srigokul Upadhyayula
Yaniv Romano
UQCV
OOD
66
94
0
10 Feb 2022
Score-Based Generative Modeling with Critically-Damped Langevin
  Diffusion
Score-Based Generative Modeling with Critically-Damped Langevin Diffusion
Tim Dockhorn
Arash Vahdat
Karsten Kreis
DiffM
71
231
0
14 Dec 2021
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
  Control
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
184
129
0
03 Oct 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
41
111
0
08 Mar 2021
Distribution-Free Conditional Median Inference
Distribution-Free Conditional Median Inference
Dhruv Medarametla
Emmanuel J. Candès
47
15
0
16 Feb 2021
Bayesian Uncertainty Estimation of Learned Variational MRI
  Reconstruction
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction
Dominik Narnhofer
Alexander Effland
Erich Kobler
Kerstin Hammernik
Florian Knoll
Thomas Pock
UQCV
BDL
40
50
0
12 Feb 2021
Distribution-Free, Risk-Controlling Prediction Sets
Distribution-Free, Risk-Controlling Prediction Sets
Stephen Bates
Anastasios Nikolas Angelopoulos
Lihua Lei
Jitendra Malik
Michael I. Jordan
OOD
232
193
0
07 Jan 2021
Denoising Score-Matching for Uncertainty Quantification in Inverse
  Problems
Denoising Score-Matching for Uncertainty Quantification in Inverse Problems
Zaccharie Ramzi
B. Remy
F. Lanusse
Jean-Luc Starck
P. Ciuciu
UQCV
MedIm
58
14
0
16 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
190
1,893
0
12 Nov 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
163
3,803
0
12 Jul 2019
Conformalized Quantile Regression
Conformalized Quantile Regression
Yaniv Romano
Evan Patterson
Emmanuel J. Candès
229
603
0
08 May 2019
MoDL: Model Based Deep Learning Architecture for Inverse Problems
MoDL: Model Based Deep Learning Architecture for Inverse Problems
H. Aggarwal
M. Mani
M. Jacob
108
1,013
0
07 Dec 2017
Learning a Variational Network for Reconstruction of Accelerated MRI
  Data
Learning a Variational Network for Reconstruction of Accelerated MRI Data
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
M. Recht
D. Sodickson
Thomas Pock
Florian Knoll
43
1,535
0
03 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
269
4,667
0
15 Mar 2017
Compressed Sensing using Generative Models
Compressed Sensing using Generative Models
Ashish Bora
A. Jalal
Eric Price
A. Dimakis
92
804
0
09 Mar 2017
Efficient Bayesian computation by proximal Markov chain Monte Carlo:
  when Langevin meets Moreau
Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau
Alain Durmus
Eric Moulines
Marcelo Pereyra
51
176
0
22 Dec 2016
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
229
10,646
0
15 Sep 2016
Least Ambiguous Set-Valued Classifiers with Bounded Error Levels
Least Ambiguous Set-Valued Classifiers with Bounded Error Levels
Mauricio Sadinle
Jing Lei
Larry A. Wasserman
110
239
0
02 Sep 2016
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
71
352
0
05 May 2016
Distribution-Free Predictive Inference For Regression
Distribution-Free Predictive Inference For Regression
Jing Lei
M. G'Sell
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
198
832
0
14 Apr 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
470
9,233
0
06 Jun 2015
Insights into analysis operator learning: From patch-based sparse models
  to higher-order MRFs
Insights into analysis operator learning: From patch-based sparse models to higher-order MRFs
Yunjin Chen
René Ranftl
Thomas Pock
46
114
0
13 Jan 2014
Proximal Markov chain Monte Carlo algorithms
Proximal Markov chain Monte Carlo algorithms
Marcelo Pereyra
56
178
0
02 Jun 2013
A Conformal Prediction Approach to Explore Functional Data
A Conformal Prediction Approach to Explore Functional Data
Jing Lei
Alessandro Rinaldo
Larry A. Wasserman
115
128
0
26 Feb 2013
A tutorial on conformal prediction
A tutorial on conformal prediction
Glenn Shafer
V. Vovk
257
1,122
0
21 Jun 2007
1