Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.09034
Cited By
Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs
18 December 2022
Chenxiao Yang
Qitian Wu
Jiahua Wang
Junchi Yan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs"
50 / 55 papers shown
Title
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
114
7
0
22 May 2024
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
188
23
0
16 Aug 2023
NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification
Qitian Wu
Wentao Zhao
Zenan Li
David Wipf
Junchi Yan
52
222
0
14 Jun 2023
OrthoReg: Improving Graph-regularized MLPs via Orthogonality Regularization
Hengrui Zhang
Shen Wang
V. Ioannidis
Soji Adeshina
Jiani Zhang
Xiao Qin
Christos Faloutsos
Da Zheng
George Karypis
Philip S. Yu
57
4
0
31 Jan 2023
DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion
Qitian Wu
Chenxiao Yang
Wen-Long Zhao
Yixuan He
David Wipf
Junchi Yan
DiffM
62
87
0
23 Jan 2023
Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks
Chenxiao Yang
Qitian Wu
Junchi Yan
40
28
0
24 Oct 2022
MLPInit: Embarrassingly Simple GNN Training Acceleration with MLP Initialization
Xiaotian Han
Tong Zhao
Yozen Liu
Xia Hu
Neil Shah
GNN
107
38
0
30 Sep 2022
Effects of Graph Convolutions in Multi-layer Networks
Aseem Baranwal
Kimon Fountoulakis
Aukosh Jagannath
51
26
0
20 Apr 2022
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
56
75
0
28 Oct 2021
Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation
Shichang Zhang
Yozen Liu
Yizhou Sun
Neil Shah
81
185
0
17 Oct 2021
Subgroup Generalization and Fairness of Graph Neural Networks
Jiaqi Ma
Junwei Deng
Qiaozhu Mei
70
82
0
29 Jun 2021
Graph-MLP: Node Classification without Message Passing in Graph
Yang Hu
Haoxuan You
Zhecan Wang
Zhicheng Wang
Erjin Zhou
Yue Gao
101
114
0
08 Jun 2021
Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth
Keyulu Xu
Mozhi Zhang
Stefanie Jegelka
Kenji Kawaguchi
GNN
42
78
0
10 May 2021
Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization
Aseem Baranwal
Kimon Fountoulakis
Aukosh Jagannath
OODD
100
76
0
13 Feb 2021
Graph Coarsening with Neural Networks
Chen Cai
Dingkang Wang
Yusu Wang
DD
176
67
0
02 Feb 2021
Scalable Graph Neural Networks via Bidirectional Propagation
Ming Chen
Zhewei Wei
Bolin Ding
Yaliang Li
Ye Yuan
Xiaoyong Du
Ji-Rong Wen
GNN
47
145
0
29 Oct 2020
On Graph Neural Networks versus Graph-Augmented MLPs
Lei Chen
Zhengdao Chen
Joan Bruna
56
46
0
28 Oct 2020
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
Qian Huang
Horace He
Abhay Singh
Ser-Nam Lim
Austin R. Benson
77
283
0
27 Oct 2020
On the linearity of large non-linear models: when and why the tangent kernel is constant
Chaoyue Liu
Libin Zhu
M. Belkin
104
141
0
02 Oct 2020
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
101
312
0
24 Sep 2020
Towards Deeper Graph Neural Networks
Meng Liu
Hongyang Gao
Shuiwang Ji
GNN
AI4CE
98
605
0
18 Jul 2020
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
116
1,485
0
04 Jul 2020
Adaptive Universal Generalized PageRank Graph Neural Network
Eli Chien
Jianhao Peng
Pan Li
O. Milenkovic
261
738
0
14 Jun 2020
Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks
Like Hui
M. Belkin
UQCV
AAML
VLM
48
171
0
12 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
303
2,728
0
02 May 2020
SIGN: Scalable Inception Graph Neural Networks
Fabrizio Frasca
Emanuele Rossi
D. Eynard
B. Chamberlain
M. Bronstein
Federico Monti
GNN
117
396
0
23 Apr 2020
Adaptive Propagation Graph Convolutional Network
Indro Spinelli
Simone Scardapane
A. Uncini
GNN
60
75
0
24 Feb 2020
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
318
1,118
0
13 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
114
338
0
11 Feb 2020
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
107
1,339
0
25 Jul 2019
GraphSAINT: Graph Sampling Based Inductive Learning Method
Hanqing Zeng
Hongkuan Zhou
Ajitesh Srivastava
Rajgopal Kannan
Viktor Prasanna
GNN
137
966
0
10 Jul 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
80
389
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
130
276
0
30 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
81
257
0
29 May 2019
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
118
579
0
27 May 2019
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification
Ting-Li Chen
Song Bian
Yizhou Sun
95
88
0
11 May 2019
Stability and Generalization of Graph Convolutional Neural Networks
Saurabh Verma
Zhi-Li Zhang
GNN
MLT
94
159
0
03 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
215
923
0
26 Apr 2019
Simplifying Graph Convolutional Networks
Felix Wu
Tianyi Zhang
Amauri Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
GNN
230
3,172
0
19 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
211
1,101
0
18 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
195
972
0
24 Jan 2019
Pitfalls of Graph Neural Network Evaluation
Oleksandr Shchur
Maximilian Mumme
Aleksandar Bojchevski
Stephan Günnemann
GNN
162
1,359
0
14 Nov 2018
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
183
769
0
12 Nov 2018
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
216
1,686
0
14 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
238
7,642
0
01 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,195
0
20 Jun 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
493
1,981
0
09 Jun 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
747
3,119
0
04 Jun 2018
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
144
1,513
0
30 Jan 2018
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
498
15,232
0
07 Jun 2017
1
2
Next