Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.06470
Cited By
Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining
13 December 2022
Florian Tramèr
Gautam Kamath
Nicholas Carlini
SILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining"
23 / 23 papers shown
Title
Crowding Out The Noise: Algorithmic Collective Action Under Differential Privacy
Rushabh Solanki
Meghana Bhange
Ulrich Aïvodji
Elliot Creager
29
0
0
09 May 2025
Position: LLM Unlearning Benchmarks are Weak Measures of Progress
Pratiksha Thaker
Shengyuan Hu
Neil Kale
Yash Maurya
Zhiwei Steven Wu
Virginia Smith
MU
53
10
0
03 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
34
0
0
01 Oct 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
36
1
0
08 Aug 2024
Noise-Aware Differentially Private Regression via Meta-Learning
Ossi Raisa
Stratis Markou
Matthew Ashman
W. Bruinsma
Marlon Tobaben
Antti Honkela
Richard E. Turner
71
1
0
12 Jun 2024
Reconstructing training data from document understanding models
Jérémie Dentan
Arnaud Paran
A. Shabou
AAML
SyDa
41
1
0
05 Jun 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
31
5
0
28 May 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
PrivImage: Differentially Private Synthetic Image Generation using Diffusion Models with Semantic-Aware Pretraining
Kecen Li
Chen Gong
Zhixiang Li
Yuzhong Zhao
Xinwen Hou
Tianhao Wang
27
10
0
19 Oct 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
40
11
0
11 Aug 2023
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
46
11
0
06 Jun 2023
Privately Customizing Prefinetuning to Better Match User Data in Federated Learning
Charlie Hou
Hongyuan Zhan
Akshat Shrivastava
Sida I. Wang
S. Livshits
Giulia Fanti
Daniel Lazar
FedML
32
15
0
17 Feb 2023
Extracting Training Data from Diffusion Models
Nicholas Carlini
Jamie Hayes
Milad Nasr
Matthew Jagielski
Vikash Sehwag
Florian Tramèr
Borja Balle
Daphne Ippolito
Eric Wallace
DiffM
63
569
0
30 Jan 2023
A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization
Ashwinee Panda
Xinyu Tang
Saeed Mahloujifar
Vikash Sehwag
Prateek Mittal
40
11
0
08 Dec 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
69
181
0
06 Dec 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Deduplicating Training Data Makes Language Models Better
Katherine Lee
Daphne Ippolito
A. Nystrom
Chiyuan Zhang
Douglas Eck
Chris Callison-Burch
Nicholas Carlini
SyDa
242
592
0
14 Jul 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
253
1,989
0
31 Dec 2020
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
114
395
0
08 Jun 2018
1