ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.04031
  4. Cited By
On Root Cause Localization and Anomaly Mitigation through Causal
  Inference

On Root Cause Localization and Anomaly Mitigation through Causal Inference

8 December 2022
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
ArXivPDFHTML

Papers citing "On Root Cause Localization and Anomaly Mitigation through Causal Inference"

14 / 14 papers shown
Title
Root Cause Identification for Collective Anomalies in Time Series given
  an Acyclic Summary Causal Graph with Loops
Root Cause Identification for Collective Anomalies in Time Series given an Acyclic Summary Causal Graph with Loops
Charles K. Assaad
Imad Ez-zejjari
Lei Zan
AI4TS
29
18
0
07 Mar 2023
Achieving Counterfactual Fairness for Anomaly Detection
Achieving Counterfactual Fairness for Anomaly Detection
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
19
7
0
04 Mar 2023
A Causal Approach to Detecting Multivariate Time-series Anomalies and
  Root Causes
A Causal Approach to Detecting Multivariate Time-series Anomalies and Root Causes
Wenzhuo Yang
Kun Zhang
Guosheng Lin
AI4TS
CML
54
9
0
30 Jun 2022
Framing Algorithmic Recourse for Anomaly Detection
Framing Algorithmic Recourse for Anomaly Detection
Debanjan Datta
F. Chen
Naren Ramakrishnan
53
5
0
29 Jun 2022
VACA: Design of Variational Graph Autoencoders for Interventional and
  Counterfactual Queries
VACA: Design of Variational Graph Autoencoders for Interventional and Counterfactual Queries
Pablo Sánchez-Martín
Miriam Rateike
Isabel Valera
CML
BDL
48
14
0
27 Oct 2021
DoWhy: An End-to-End Library for Causal Inference
DoWhy: An End-to-End Library for Causal Inference
Amit Sharma
Emre Kıcıman
CML
34
160
0
09 Nov 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
64
790
0
24 Sep 2020
Interpretable, Multidimensional, Multimodal Anomaly Detection with
  Negative Sampling for Detection of Device Failure
Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure
John Sipple
37
53
0
12 Jul 2020
Explainable Deep One-Class Classification
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
32
198
0
03 Jul 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
94
179
0
11 Jun 2020
Causal structure based root cause analysis of outliers
Causal structure based root cause analysis of outliers
Dominik Janzing
Kailash Budhathoki
Lenon Minorics
Patrick Blobaum
CML
45
64
0
05 Dec 2019
A Graph Autoencoder Approach to Causal Structure Learning
A Graph Autoencoder Approach to Causal Structure Learning
Ignavier Ng
Shengyu Zhu
Zhitang Chen
Zhuangyan Fang
BDL
CML
44
82
0
18 Nov 2019
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
58
203
0
21 Oct 2019
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class
  Models
Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models
Jacob R. Kauffmann
K. Müller
G. Montavon
DRL
64
96
0
16 May 2018
1