Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.01848
Cited By
Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness
4 December 2022
R. Seccia
Corrado Coppola
G. Liuzzi
L. Palagi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness"
24 / 24 papers shown
Title
Federated Optimization Algorithms with Random Reshuffling and Gradient Compression
Abdurakhmon Sadiev
Grigory Malinovsky
Eduard A. Gorbunov
Igor Sokolov
Ahmed Khaled
Konstantin Burlachenko
Peter Richtárik
FedML
51
21
0
14 Jun 2022
Server-Side Stepsizes and Sampling Without Replacement Provably Help in Federated Optimization
Grigory Malinovsky
Konstantin Mishchenko
Peter Richtárik
FedML
48
24
0
26 Jan 2022
Convergence of Random Reshuffling Under The Kurdyka-Łojasiewicz Inequality
Xiao Li
Andre Milzarek
Junwen Qiu
39
20
0
10 Oct 2021
Random Reshuffling with Variance Reduction: New Analysis and Better Rates
Grigory Malinovsky
Alibek Sailanbayev
Peter Richtárik
41
20
0
19 Apr 2021
Proximal and Federated Random Reshuffling
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
FedML
54
31
0
12 Feb 2021
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
81
75
0
18 Jun 2020
SGD with shuffling: optimal rates without component convexity and large epoch requirements
Kwangjun Ahn
Chulhee Yun
S. Sra
49
66
0
12 Jun 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
62
131
0
10 Jun 2020
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen
Quoc Tran-Dinh
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
83
78
0
19 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
64
183
0
09 Feb 2020
Stochastic Gradient Descent for Nonconvex Learning without Bounded Gradient Assumptions
Yunwen Lei
Ting Hu
Guiying Li
K. Tang
MLT
77
118
0
03 Feb 2019
Stochastic (Approximate) Proximal Point Methods: Convergence, Optimality, and Adaptivity
Hilal Asi
John C. Duchi
120
125
0
12 Oct 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
59
364
0
05 Jun 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
53
298
0
25 May 2018
Adaptive Sampling Strategies for Stochastic Optimization
Raghu Bollapragada
R. Byrd
J. Nocedal
44
116
0
30 Oct 2017
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
32
127
0
24 Mar 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
419
2,936
0
15 Sep 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
233
3,206
0
15 Jun 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.7K
150,006
0
22 Dec 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
120
1,548
0
22 Sep 2013
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
316
1,245
0
10 Sep 2013
Practical recommendations for gradient-based training of deep architectures
Yoshua Bengio
3DH
ODL
189
2,197
0
24 Jun 2012
Hybrid Deterministic-Stochastic Methods for Data Fitting
M. Friedlander
Mark Schmidt
196
387
0
13 Apr 2011
1