ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06704
21
31

Proximal and Federated Random Reshuffling

12 February 2021
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
    FedML
ArXivPDFHTML
Abstract

Random Reshuffling (RR), also known as Stochastic Gradient Descent (SGD) without replacement, is a popular and theoretically grounded method for finite-sum minimization. We propose two new algorithms: Proximal and Federated Random Reshuffing (ProxRR and FedRR). The first algorithm, ProxRR, solves composite convex finite-sum minimization problems in which the objective is the sum of a (potentially non-smooth) convex regularizer and an average of nnn smooth objectives. We obtain the second algorithm, FedRR, as a special case of ProxRR applied to a reformulation of distributed problems with either homogeneous or heterogeneous data. We study the algorithms' convergence properties with constant and decreasing stepsizes, and show that they have considerable advantages over Proximal and Local SGD. In particular, our methods have superior complexities and ProxRR evaluates the proximal operator once per epoch only. When the proximal operator is expensive to compute, this small difference makes ProxRR up to nnn times faster than algorithms that evaluate the proximal operator in every iteration. We give examples of practical optimization tasks where the proximal operator is difficult to compute and ProxRR has a clear advantage. Finally, we corroborate our results with experiments on real data sets.

View on arXiv
Comments on this paper