ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.17113
  4. Cited By
Weisfeiler and Leman Go Relational

Weisfeiler and Leman Go Relational

30 November 2022
Pablo Barceló
Mikhail Galkin
Christopher Morris
Miguel Romero Orth
    GNN
ArXivPDFHTML

Papers citing "Weisfeiler and Leman Go Relational"

7 / 7 papers shown
Title
Edge Directionality Improves Learning on Heterophilic Graphs
Edge Directionality Improves Learning on Heterophilic Graphs
Emanuele Rossi
Bertrand Charpentier
Francesco Di Giovanni
Fabrizio Frasca
Stephan Günnemann
Michael M. Bronstein
22
56
0
17 May 2023
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
  Databases
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases
Hongyu Ren
Mikhail Galkin
Michael Cochez
Zhaocheng Zhu
J. Leskovec
NAI
GNN
41
35
0
26 Mar 2023
A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge
  Graphs
A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge Graphs
Xingyue Huang
Miguel Romero
.Ismail .Ilkan Ceylan
Pablo Barceló
35
24
0
04 Feb 2023
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of
  Graph Neural Networks for Attributed and Dynamic Graphs
Weisfeiler-Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs
Silvia Beddar-Wiesing
Giuseppe Alessio D’Inverno
C. Graziani
Veronica Lachi
Alice Moallemy-Oureh
F. Scarselli
J. M. Thomas
31
9
0
08 Oct 2022
A Survey on Complex Question Answering over Knowledge Base: Recent
  Advances and Challenges
A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges
Bin Fu
Yunqi Qiu
Chengguang Tang
Yang Li
Haiyang Yu
Jian Sun
161
95
0
26 Jul 2020
The expressive power of kth-order invariant graph networks
The expressive power of kth-order invariant graph networks
Floris Geerts
128
37
0
23 Jul 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1