Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.16605
Cited By
v1
v2 (latest)
Top-Down Synthesis for Library Learning
29 November 2022
Matthew Bowers
Theo X. Olausson
Catherine Wong
Gabriel Grand
J. Tenenbaum
Kevin Ellis
Armando Solar-Lezama
DiffM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Top-Down Synthesis for Library Learning"
9 / 9 papers shown
Title
Common Benchmarks Undervalue the Generalization Power of Programmatic Policies
Amirhossein Rajabpour
Kiarash Aghakasiri
Sandra Zilles
Levi H. S. Lelis
OffRL
28
0
0
17 Jun 2025
Refactoring Codebases through Library Design
Ziga Kovacic
Celine Lee
Justin T Chiu
Wenting Zhao
Kevin Ellis
19
0
0
26 May 2025
MeMo: Meaningful, Modular Controllers via Noise Injection
Megan Tjandrasuwita
Jie Xu
Armando Solar-Lezama
Wojciech Matusik
97
0
0
24 May 2024
REFACTOR: Learning to Extract Theorems from Proofs
Jin Peng Zhou
Yuhuai Wu
Qiyang Li
Roger C. Grosse
AIMat
79
8
0
26 Feb 2024
ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives
R. K. Jones
Paul Guerrero
Niloy J. Mitra
Daniel E. Ritchie
77
25
0
09 May 2023
Programming-by-Demonstration for Long-Horizon Robot Tasks
Noah T Patton
Kia Rahmani
Meghana Missula
Joydeep Biswas
Icsil Dillig
96
12
0
04 May 2023
Anti-unification and Generalization: A Survey
David M. Cerna
Temur Kutsia
AI4CE
91
17
0
01 Feb 2023
Neurosymbolic Programming for Science
Jennifer J. Sun
Megan Tjandrasuwita
Atharva Sehgal
Armando Solar-Lezama
Swarat Chaudhuri
Yisong Yue
Omar Costilla-Reyes
NAI
101
12
0
10 Oct 2022
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Kevin Ellis
Catherine Wong
Maxwell Nye
Mathias Sablé-Meyer
Luc Cary
Lucas Morales
Luke B. Hewitt
Armando Solar-Lezama
J. Tenenbaum
NAI
CLL
114
196
0
15 Jun 2020
1