ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.15259
  4. Cited By
A Call to Reflect on Evaluation Practices for Failure Detection in Image
  Classification
v1v2 (latest)

A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification

28 November 2022
Paul F. Jaeger
Carsten T. Lüth
Lukas Klein
Till J. Bungert
    UQCV
ArXiv (abs)PDFHTMLGithub (32★)

Papers citing "A Call to Reflect on Evaluation Practices for Failure Detection in Image Classification"

24 / 24 papers shown
Title
Interpretable Failure Detection with Human-Level Concepts
Interpretable Failure Detection with Human-Level Concepts
Kien X. Nguyen
Tang Li
Xi Peng
113
1
0
07 Feb 2025
DistilDoc: Knowledge Distillation for Visually-Rich Document Applications
DistilDoc: Knowledge Distillation for Visually-Rich Document Applications
Jordy Van Landeghem
Subhajit Maity
Ayan Banerjee
Matthew Blaschko
Marie-Francine Moens
Josep Lladós
Sanket Biswas
112
2
0
12 Jun 2024
Rejection via Learning Density Ratios
Rejection via Learning Density Ratios
Alexander Soen
Hisham Husain
Philip Schulz
Vu-Linh Nguyen
122
2
0
29 May 2024
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
108
126
0
15 Jul 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution
  Shifts and Training Conflicts
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts
Weixin Liang
James Zou
OOD
76
84
0
14 Feb 2022
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
173
225
0
16 Jun 2021
Common Limitations of Image Processing Metrics: A Picture Story
Common Limitations of Image Processing Metrics: A Picture Story
Annika Reinke
M. Tizabi
Carole H. Sudre
Matthias Eisenmann
Tim Radsch
...
Gaël Varoquaux
Manuel Wiesenfarth
Ziv R. Yaniv
Paul Jäger
Lena Maier-Hein
69
146
0
12 Apr 2021
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
Post-hoc Uncertainty Calibration for Domain Drift Scenarios
Christian Tomani
Sebastian Gruber
Muhammed Ebrar Erdem
Daniel Cremers
Florian Buettner
UQCV
170
67
0
20 Dec 2020
WILDS: A Benchmark of in-the-Wild Distribution Shifts
WILDS: A Benchmark of in-the-Wild Distribution Shifts
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
...
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
OOD
183
1,434
0
14 Dec 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
117
800
0
24 Sep 2020
BREEDS: Benchmarks for Subpopulation Shift
BREEDS: Benchmarks for Subpopulation Shift
Shibani Santurkar
Dimitris Tsipras
Aleksander Madry
OOD
59
175
0
11 Aug 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
211
2,056
0
16 Apr 2020
Hybrid Models for Open Set Recognition
Hybrid Models for Open Set Recognition
Hongjie Zhang
Ang Li
Jie Guo
Yanwen Guo
BDL
135
185
0
27 Mar 2020
Detecting semantic anomalies
Detecting semantic anomalies
Faruk Ahmed
Aaron Courville
50
83
0
13 Aug 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
170
1,704
0
06 Jun 2019
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
SelectiveNet: A Deep Neural Network with an Integrated Reject Option
Yonatan Geifman
Ran El-Yaniv
CVBMOOD
126
311
0
26 Jan 2019
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
187
2,060
0
10 Jul 2018
To Trust Or Not To Trust A Classifier
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
179
473
0
30 May 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UDBDLEDLUQCVPER
193
922
0
28 Feb 2018
Selective Classification for Deep Neural Networks
Selective Classification for Deep Neural Networks
Yonatan Geifman
Ran El-Yaniv
CVBM
95
529
0
23 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDLOODUDUQCVPER
359
4,718
0
15 Mar 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
166
3,468
0
07 Oct 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
333
8,169
0
13 Aug 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
831
9,345
0
06 Jun 2015
1