ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.13059
  4. Cited By
Inversion of sea surface currents from satellite-derived SST-SSH
  synergies with 4DVarNets
v1v2 (latest)

Inversion of sea surface currents from satellite-derived SST-SSH synergies with 4DVarNets

23 November 2022
Ronan Fablet
Bertrand Chapron
Julien Le Sommer
Florian Sévellec
    AI4Cl
ArXiv (abs)PDFHTML

Papers citing "Inversion of sea surface currents from satellite-derived SST-SSH synergies with 4DVarNets"

8 / 8 papers shown
Title
Training neural mapping schemes for satellite altimetry with simulation
  data
Training neural mapping schemes for satellite altimetry with simulation data
Q. Febvre
Julien Le Sommer
C. Ubelmann
Ronan Fablet
42
9
0
19 Sep 2023
Machine learning with data assimilation and uncertainty quantification
  for dynamical systems: a review
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Yike Guo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
81
133
0
18 Mar 2023
Joint calibration and mapping of satellite altimetry data using
  trainable variational models
Joint calibration and mapping of satellite altimetry data using trainable variational models
Q. Febvre
Ronan Fablet
Julien Le Sommer
C. Ubelmann
34
12
0
07 Oct 2021
Super-resolution data assimilation
Super-resolution data assimilation
Sébastien Barthélémy
J. Brajard
Laurent Bertino
F. Counillon
AI4Cl
51
26
0
04 Sep 2021
Learning Variational Data Assimilation Models and Solvers
Learning Variational Data Assimilation Models and Solvers
Ronan Fablet
Bertrand Chapron
Lucas Drumetz
É. Mémin
O. Pannekoucke
F. Rousseau
63
71
0
25 Jul 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
398
1,988
0
11 Apr 2020
Bayesian inference of chaotic dynamics by merging data assimilation,
  machine learning and expectation-maximization
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
Marc Bocquet
J. Brajard
A. Carrassi
Laurent Bertino
67
104
0
17 Jan 2020
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV3DPCSSeg3DH
160
6,556
0
21 Jun 2016
1