Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.12461
Cited By
A Neural-Network-Based Convex Regularizer for Inverse Problems
22 November 2022
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Neural-Network-Based Convex Regularizer for Inverse Problems"
19 / 19 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
Bas Peters
Michael Solomon
34
0
0
10 May 2025
Universal Architectures for the Learning of Polyhedral Norms and Convex Regularizers
M. Unser
Stanislas Ducotterd
40
0
0
24 Mar 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
55
0
0
28 Jan 2025
A Primal-dual algorithm for image reconstruction with ICNNs
Hok Shing Wong
Matthias Joachim Ehrhardt
Subhadip Mukherjee
26
1
0
16 Oct 2024
The Star Geometry of Critic-Based Regularizer Learning
Oscar Leong
Eliza O'Reilly
Yong Sheng Soh
AAML
42
0
0
29 Aug 2024
Controlled Learning of Pointwise Nonlinearities in Neural-Network-Like Architectures
Michael Unser
Alexis Goujon
Stanislas Ducotterd
29
2
0
23 Aug 2024
Iteratively Refined Image Reconstruction with Learned Attentive Regularizers
Mehrsa Pourya
Sebastian Neumayer
Michael Unser
43
0
0
09 Jul 2024
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Sebastian Neumayer
Fabian Altekrüger
39
1
0
18 Jun 2024
Do Bayesian imaging methods report trustworthy probabilities?
David Y. W. Thong
Charlesquin Kemajou Mbakam
Marcelo Pereyra
UQCV
31
2
0
13 May 2024
Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction
Yue Cai
Yu Luo
Jie Ling
Shun Yao
27
2
0
09 May 2024
Robustness and Exploration of Variational and Machine Learning Approaches to Inverse Problems: An Overview
Alexander Auras
Kanchana Vaishnavi Gandikota
Hannah Droege
Michael Moeller
AAML
31
0
0
19 Feb 2024
Local monotone operator learning using non-monotone operators: MnM-MOL
Maneesh John
Jyothi Rikabh Chand
Mathews Jacob
16
1
0
01 Dec 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
41
23
0
21 Aug 2023
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
26
5
0
19 Aug 2023
Accelerated Bayesian imaging by relaxed proximal-point Langevin sampling
Teresa Klatzer
P. Dobson
Y. Altmann
Marcelo Pereyra
J. Sanz-Serna
K. Zygalakis
16
5
0
18 Aug 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
29
6
0
27 Mar 2023
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
58
72
0
31 Jan 2022
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
184
598
0
22 Sep 2016
1