ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10154
  4. Cited By
CRAFT: Concept Recursive Activation FacTorization for Explainability

CRAFT: Concept Recursive Activation FacTorization for Explainability

17 November 2022
Thomas Fel
Agustin Picard
Louis Bethune
Thibaut Boissin
David Vigouroux
Julien Colin
Rémi Cadène
Thomas Serre
ArXivPDFHTML

Papers citing "CRAFT: Concept Recursive Activation FacTorization for Explainability"

21 / 21 papers shown
Title
Representational Similarity via Interpretable Visual Concepts
Representational Similarity via Interpretable Visual Concepts
Neehar Kondapaneni
Oisin Mac Aodha
Pietro Perona
DRL
389
1
0
19 Mar 2025
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
Itay Benou
Tammy Riklin-Raviv
92
1
0
27 Feb 2025
Explaining the Impact of Training on Vision Models via Activation Clustering
Explaining the Impact of Training on Vision Models via Activation Clustering
Ahcène Boubekki
Samuel G. Fadel
Sebastian Mair
162
0
0
29 Nov 2024
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
A. Newson
Florence dÁlché-Buc
SSL
89
1
0
01 Jul 2024
Toy Models of Superposition
Toy Models of Superposition
Nelson Elhage
Tristan Hume
Catherine Olsson
Nicholas Schiefer
T. Henighan
...
Sam McCandlish
Jared Kaplan
Dario Amodei
Martin Wattenberg
C. Olah
AAML
MILM
148
351
0
21 Sep 2022
Making Sense of Dependence: Efficient Black-box Explanations Using
  Dependence Measure
Making Sense of Dependence: Efficient Black-box Explanations Using Dependence Measure
Paul Novello
Thomas Fel
David Vigouroux
FAtt
40
28
0
13 Jun 2022
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence
Frederik Pahde
Maximilian Dreyer
Leander Weber
Moritz Weckbecker
Christopher J. Anders
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
91
9
0
07 Feb 2022
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
  Goals of Human Trust in AI
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
281
436
0
15 Oct 2020
Prevalence of Neural Collapse during the terminal phase of deep learning
  training
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
88
563
0
18 Aug 2020
RISE: Randomized Input Sampling for Explanation of Black-box Models
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
107
1,159
0
19 Jun 2018
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
45
1,514
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
119
3,848
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
108
5,920
0
04 Mar 2017
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
274
10,149
0
16 Mar 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
155
9,266
0
14 Dec 2015
A Flexible and Efficient Algorithmic Framework for Constrained Matrix
  and Tensor Factorization
A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization
Kejun Huang
N. Sidiropoulos
A. Liavas
30
171
0
13 Jun 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
166
4,653
0
21 Dec 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
272
15,825
0
12 Nov 2013
Asymptotic normality and efficiency of two Sobol index estimators
Asymptotic normality and efficiency of two Sobol index estimators
Alexandre Janon
T. Klein
Agnès Lagnoux-Renaudie
M. Nodet
Clémentine Prieur
42
230
0
26 Mar 2013
Algorithms for nonnegative matrix factorization with the beta-divergence
Algorithms for nonnegative matrix factorization with the beta-divergence
Cédric Févotte
Jérôme Idier
78
802
0
08 Oct 2010
Calculations of Sobol indices for the Gaussian process metamodel
Calculations of Sobol indices for the Gaussian process metamodel
A. Marrel
Bertrand Iooss
Béatrice Laurent
O. Roustant
133
335
0
07 Feb 2008
1