ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.08775
  4. Cited By
Unbalanced Optimal Transport, from Theory to Numerics
v1v2 (latest)

Unbalanced Optimal Transport, from Theory to Numerics

16 November 2022
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
    OT
ArXiv (abs)PDFHTML

Papers citing "Unbalanced Optimal Transport, from Theory to Numerics"

50 / 63 papers shown
Title
Model alignment using inter-modal bridges
Model alignment using inter-modal bridges
Ali Gholamzadeh
Noor Sajid
209
0
0
18 May 2025
A primer on optimal transport for causal inference with observational data
Florian F Gunsilius
OTCML
115
0
0
10 Mar 2025
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Milena Gazdieva
Jaemoo Choi
Alexander Kolesov
Jaewoong Choi
Petr Mokrov
Alexander Korotin
OT
139
2
0
04 Oct 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
93
0
0
04 Aug 2024
Stability and upper bounds for statistical estimation of unbalanced
  transport potentials
Stability and upper bounds for statistical estimation of unbalanced transport potentials
A. Vacher
Franccois-Xavier Vialard
OT
51
4
0
17 Mar 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
280
30,103
0
01 Mar 2022
Empirical Optimal Transport between Different Measures Adapts to Lower
  Complexity
Empirical Optimal Transport between Different Measures Adapts to Lower Complexity
Shayan Hundrieser
Thomas Staudt
Axel Munk
OT
61
23
0
21 Feb 2022
Improving Molecular Representation Learning with Metric
  Learning-enhanced Optimal Transport
Improving Molecular Representation Learning with Metric Learning-enhanced Optimal Transport
Fang Wu
Nicolas Courty
Shuting Jin
Stan Z. Li
OODOT
58
8
0
13 Feb 2022
Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and
  1-D Frank-Wolfe
Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe
Thibault Séjourné
Franccois-Xavier Vialard
Gabriel Peyré
OT
114
19
0
03 Jan 2022
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
74
23
0
06 Oct 2021
Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation
Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation
Borna Bevsić
Nikhil Gosala
Daniele Cattaneo
Abhinav Valada
62
22
0
30 Sep 2021
Fast and Scalable Optimal Transport for Brain Tractograms
Fast and Scalable Optimal Transport for Brain Tractograms
Jean Feydy
Pierre Roussillon
A. Trouvé
Pietro Gori
OT
58
27
0
05 Jul 2021
Unbalanced Optimal Transport through Non-negative Penalized Linear
  Regression
Unbalanced Optimal Transport through Non-negative Penalized Linear Regression
Laetitia Chapel
Rémi Flamary
Haoran Wu
Cédric Févotte
Gilles Gasso
OT
26
46
0
08 Jun 2021
Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and
  Costs
Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs
M. Scetbon
Gabriel Peyré
Marco Cuturi
OT
65
61
0
02 Jun 2021
LCDNet: Deep Loop Closure Detection and Point Cloud Registration for
  LiDAR SLAM
LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM
Daniele Cattaneo
Matteo Vaghi
Abhinav Valada
3DPC
65
164
0
08 Mar 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
78
151
0
05 Mar 2021
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
  Relaxation
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
72
71
0
09 Sep 2020
Kernel methods through the roof: handling billions of points efficiently
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
75
116
0
18 Jun 2020
Entropic Optimal Transport between Unbalanced Gaussian Measures has a
  Closed Form
Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form
H. Janati
Boris Muzellec
Gabriel Peyré
Marco Cuturi
OT
108
86
0
03 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
306
2,732
0
02 May 2020
Learning Autoencoders with Relational Regularization
Learning Autoencoders with Relational Regularization
Hongteng Xu
Dixin Luo
Ricardo Henao
Svati Shah
Lawrence Carin
52
42
0
07 Feb 2020
Sinkhorn Divergences for Unbalanced Optimal Transport
Sinkhorn Divergences for Unbalanced Optimal Transport
Thibault Séjourné
Jean Feydy
Franccois-Xavier Vialard
A. Trouvé
Gabriel Peyré
OT
78
74
0
28 Oct 2019
Gromov-Wasserstein Averaging in a Riemannian Framework
Gromov-Wasserstein Averaging in a Riemannian Framework
Samir Chowdhury
Tom Needham
47
36
0
10 Oct 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
62
93
0
24 Jul 2019
GOT: An Optimal Transport framework for Graph comparison
GOT: An Optimal Transport framework for Graph comparison
Hermina Petric Maretic
Mireille El Gheche
Giovanni Chierchia
P. Frossard
OT
134
119
0
05 Jun 2019
Statistical bounds for entropic optimal transport: sample complexity and
  the central limit theorem
Statistical bounds for entropic optimal transport: sample complexity and the central limit theorem
Gonzalo E. Mena
Jonathan Niles-Weed
OT
52
166
0
28 May 2019
Sliced Gromov-Wasserstein
Sliced Gromov-Wasserstein
Titouan Vayer
Rémi Flamary
Romain Tavenard
Laetitia Chapel
Nicolas Courty
OT
52
100
0
24 May 2019
Subspace Detours: Building Transport Plans that are Optimal on Subspace
  Projections
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections
Boris Muzellec
Marco Cuturi
OT
58
31
0
24 May 2019
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
60
197
0
18 May 2019
Learning Generative Models across Incomparable Spaces
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
55
112
0
14 May 2019
Global convergence of neuron birth-death dynamics
Global convergence of neuron birth-death dynamics
Grant M. Rotskoff
Samy Jelassi
Joan Bruna
Eric Vanden-Eijnden
41
46
0
05 Feb 2019
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Hongteng Xu
Dixin Luo
H. Zha
Lawrence Carin
89
259
0
17 Jan 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
778
8,533
0
03 Jan 2019
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
80
127
0
07 Nov 2018
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
61
528
0
18 Oct 2018
Sample Complexity of Sinkhorn divergences
Sample Complexity of Sinkhorn divergences
Aude Genevay
Lénaïc Chizat
Francis R. Bach
Marco Cuturi
Gabriel Peyré
OT
77
288
0
05 Oct 2018
Gromov-Wasserstein Alignment of Word Embedding Spaces
Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis
Tommi Jaakkola
OT
56
328
0
31 Aug 2018
Towards Optimal Transport with Global Invariances
Towards Optimal Transport with Global Invariances
David Alvarez-Melis
Stefanie Jegelka
Tommi Jaakkola
OT
65
71
0
25 Jun 2018
FlowNet3D: Learning Scene Flow in 3D Point Clouds
FlowNet3D: Learning Scene Flow in 3D Point Clouds
Xingyu Liu
C. Qi
Leonidas Guibas
3DPC
88
480
0
04 Jun 2018
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Edouard Grave
Armand Joulin
Quentin Berthet
69
199
0
29 May 2018
On the Global Convergence of Gradient Descent for Over-parameterized
  Models using Optimal Transport
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat
Francis R. Bach
OT
212
735
0
24 May 2018
Improving GANs Using Optimal Transport
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OTGAN
67
324
0
15 Mar 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
222
2,148
0
01 Mar 2018
Smooth and Sparse Optimal Transport
Smooth and Sparse Optimal Transport
Mathieu Blondel
Vivien Seguy
Antoine Rolet
OT
61
175
0
17 Oct 2017
Sharp asymptotic and finite-sample rates of convergence of empirical
  measures in Wasserstein distance
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
208
421
0
01 Jul 2017
Learning Generative Models with Sinkhorn Divergences
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
176
630
0
01 Jun 2017
FALKON: An Optimal Large Scale Kernel Method
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
78
196
0
31 May 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
74
344
0
30 May 2017
Joint Distribution Optimal Transportation for Domain Adaptation
Joint Distribution Optimal Transportation for Domain Adaptation
Nicolas Courty
Rémi Flamary
Amaury Habrard
A. Rakotomamonjy
OTOOD
88
564
0
24 May 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
723
0
24 May 2017
12
Next