Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.05764
Cited By
DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems
9 November 2022
Nabeel Seedat
F. Imrie
M. Schaar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DC-Check: A Data-Centric AI checklist to guide the development of reliable machine learning systems"
39 / 89 papers shown
Title
Degenerate Feedback Loops in Recommender Systems
Ray Jiang
Silvia Chiappa
Tor Lattimore
András Gyorgy
Pushmeet Kohli
54
196
0
27 Feb 2019
An introduction to domain adaptation and transfer learning
Wouter M. Kouw
Marco Loog
OOD
45
291
0
31 Dec 2018
Aequitas: A Bias and Fairness Audit Toolkit
Pedro Saleiro
Benedict Kuester
Loren Hinkson
J. London
Abby Stevens
Ari Anisfeld
Kit T. Rodolfa
Rayid Ghani
117
327
0
14 Nov 2018
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
68
371
0
29 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
95,229
0
11 Oct 2018
Model Cards for Model Reporting
Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
140
1,908
0
05 Oct 2018
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Helen Zhou
FaML
95
1,092
0
31 Jul 2018
Automated Data Slicing for Model Validation:A Big data - AI Integration Approach
Yeounoh Chung
Tim Kraska
N. Polyzotis
Ki Hyun Tae
Steven Euijong Whang
96
131
0
16 Jul 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
194
2,063
0
10 Jul 2018
GAIN: Missing Data Imputation using Generative Adversarial Nets
Jinsung Yoon
James Jordon
M. Schaar
GAN
68
1,029
0
07 Jun 2018
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
85
2,615
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
128
2,082
0
18 Apr 2018
Iterative Learning with Open-set Noisy Labels
Yisen Wang
Weiyang Liu
Xingjun Ma
James Bailey
H. Zha
Le Song
Shutao Xia
NoLa
84
328
0
31 Mar 2018
Datasheets for Datasets
Timnit Gebru
Jamie Morgenstern
Briana Vecchione
Jennifer Wortman Vaughan
Hanna M. Wallach
Hal Daumé
Kate Crawford
292
2,201
0
23 Mar 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
109
648
0
13 Feb 2018
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
131
1,456
0
14 Dec 2017
Data Augmentation Generative Adversarial Networks
Antreas Antoniou
Amos Storkey
Harrison Edwards
MedIm
GAN
147
1,074
0
12 Nov 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
805
132,725
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
362
4,721
0
15 Mar 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
343
1,838
0
02 Mar 2017
Domain Adaptation for Visual Applications: A Comprehensive Survey
G. Csurka
OOD
87
507
0
17 Feb 2017
Correlation Alignment for Unsupervised Domain Adaptation
Baochen Sun
Jiashi Feng
Kate Saenko
OOD
53
402
0
06 Dec 2016
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
847
5,847
0
05 Dec 2016
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
189
406
0
20 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
Data Programming: Creating Large Training Sets, Quickly
Alexander Ratner
Christopher De Sa
Sen Wu
Daniel Selsam
Christopher Ré
206
718
0
25 May 2016
Interpretable Distribution Features with Maximum Testing Power
Wittawat Jitkrittum
Z. Szabó
Kacper P. Chwialkowski
Arthur Gretton
92
135
0
22 May 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Loss factorization, weakly supervised learning and label noise robustness
Giorgio Patrini
Frank Nielsen
Richard Nock
M. Carioni
NoLa
183
113
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,510
0
10 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
869
9,353
0
06 Jun 2015
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
390
9,524
0
28 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
142
946
0
18 Feb 2015
Learning Transferable Features with Deep Adaptation Networks
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
OOD
223
5,215
0
10 Feb 2015
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
247
6,043
0
26 Sep 2014
A Model of Inductive Bias Learning
Jonathan Baxter
113
1,217
0
01 Jun 2011
MissForest - nonparametric missing value imputation for mixed-type data
D. Stekhoven
Peter Buhlmann
240
4,330
0
04 May 2011
A tutorial on conformal prediction
Glenn Shafer
V. Vovk
456
1,151
0
21 Jun 2007
Previous
1
2