Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.04780
Cited By
On the Robustness of Explanations of Deep Neural Network Models: A Survey
9 November 2022
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Robustness of Explanations of Deep Neural Network Models: A Survey"
40 / 90 papers shown
Title
Neural Network Attributions: A Causal Perspective
Aditya Chattopadhyay
Piyushi Manupriya
Anirban Sarkar
V. Balasubramanian
CML
53
146
0
06 Feb 2019
Fooling Neural Network Interpretations via Adversarial Model Manipulation
Juyeon Heo
Sunghwan Joo
Taesup Moon
AAML
FAtt
95
204
0
06 Feb 2019
On the (In)fidelity and Sensitivity for Explanations
Chih-Kuan Yeh
Cheng-Yu Hsieh
A. Suggala
David I. Inouye
Pradeep Ravikumar
FAtt
75
453
0
27 Jan 2019
Adversarial Attack and Defense on Graph Data: A Survey
Lichao Sun
Yingtong Dou
Carl Yang
Ji Wang
Yixin Liu
Philip S. Yu
Lifang He
Yangqiu Song
GNN
AAML
74
281
0
26 Dec 2018
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
108
172
0
03 Dec 2018
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
77
319
0
23 Nov 2018
Security Matters: A Survey on Adversarial Machine Learning
Guofu Li
Pengjia Zhu
Jin Li
Zhemin Yang
Ning Cao
Zhiyi Chen
AAML
63
25
0
16 Oct 2018
Local Explanation Methods for Deep Neural Networks Lack Sensitivity to Parameter Values
Julius Adebayo
Justin Gilmer
Ian Goodfellow
Been Kim
FAtt
AAML
49
128
0
08 Oct 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
141
1,967
0
08 Oct 2018
Shedding Light on Black Box Machine Learning Algorithms: Development of an Axiomatic Framework to Assess the Quality of Methods that Explain Individual Predictions
Milo Honegger
48
35
0
15 Aug 2018
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
79
528
0
21 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
126
941
0
20 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
181
1,171
0
19 Jun 2018
How Important Is a Neuron?
Kedar Dhamdhere
Mukund Sundararajan
Qiqi Yan
FAtt
GNN
60
130
0
30 May 2018
Did the Model Understand the Question?
Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
ELM
OOD
FAtt
56
197
0
14 May 2018
Influence-Directed Explanations for Deep Convolutional Networks
Klas Leino
S. Sen
Anupam Datta
Matt Fredrikson
Linyi Li
TDI
FAtt
76
75
0
11 Feb 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
377
11,877
0
11 Jan 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
97
1,867
0
02 Jan 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
217
1,842
0
30 Nov 2017
The (Un)reliability of saliency methods
Pieter-Jan Kindermans
Sara Hooker
Julius Adebayo
Maximilian Alber
Kristof T. Schütt
Sven Dähne
D. Erhan
Been Kim
FAtt
XAI
101
685
0
02 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
112
2,300
0
30 Oct 2017
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
133
867
0
29 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
310
12,117
0
19 Jun 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
204
2,226
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,939
0
22 May 2017
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
67
591
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
76
1,525
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,879
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
6,015
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
402
3,798
0
28 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,023
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
81
947
0
01 Aug 2016
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
Wojciech Samek
FAtt
77
462
0
04 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,990
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,326
0
14 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,897
0
14 Nov 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
136
1,194
0
21 Sep 2015
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
248
4,672
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,308
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,893
0
12 Nov 2013
Previous
1
2