ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03788
30
75

Influence-Directed Explanations for Deep Convolutional Networks

11 February 2018
Klas Leino
S. Sen
Anupam Datta
Matt Fredrikson
Linyi Li
    TDI
    FAtt
ArXivPDFHTML
Abstract

We study the problem of explaining a rich class of behavioral properties of deep neural networks. Distinctively, our influence-directed explanations approach this problem by peering inside the network to identify neurons with high influence on a quantity and distribution of interest, using an axiomatically-justified influence measure, and then providing an interpretation for the concepts these neurons represent. We evaluate our approach by demonstrating a number of its unique capabilities on convolutional neural networks trained on ImageNet. Our evaluation demonstrates that influence-directed explanations (1) identify influential concepts that generalize across instances, (2) can be used to extract the "essence" of what the network learned about a class, and (3) isolate individual features the network uses to make decisions and distinguish related classes.

View on arXiv
Comments on this paper