ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.02377
  4. Cited By
Black-box Coreset Variational Inference
v1v2 (latest)

Black-box Coreset Variational Inference

4 November 2022
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
    BDL
ArXiv (abs)PDFHTML

Papers citing "Black-box Coreset Variational Inference"

39 / 39 papers shown
Title
Gradient-matching coresets for continual learning
Gradient-matching coresets for continual learning
Lukas Balles
Giovanni Zappella
Cédric Archambeau
CLLDD
67
2
0
09 Dec 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OODMUBDL
117
6
0
01 Oct 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
107
236
0
27 Jul 2021
Deep Learning on a Data Diet: Finding Important Examples Early in
  Training
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
125
462
0
15 Jul 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
77
21
0
21 Jun 2021
Online Coreset Selection for Rehearsal-based Continual Learning
Online Coreset Selection for Rehearsal-based Continual Learning
Jaehong Yoon
Divyam Madaan
Eunho Yang
Sung Ju Hwang
CLL
90
145
0
02 Jun 2021
Dataset Meta-Learning from Kernel Ridge-Regression
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
162
246
0
30 Oct 2020
Semi-supervised Batch Active Learning via Bilevel Optimization
Semi-supervised Batch Active Learning via Bilevel Optimization
Zalan Borsos
Marco Tagliasacchi
Andreas Krause
139
23
0
19 Oct 2020
$β$-Cores: Robust Large-Scale Bayesian Data Summarization in the
  Presence of Outliers
βββ-Cores: Robust Large-Scale Bayesian Data Summarization in the Presence of Outliers
Dionysis Manousakas
Cecilia Mascolo
45
2
0
31 Aug 2020
Dataset Condensation with Gradient Matching
Dataset Condensation with Gradient Matching
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
DD
126
503
0
10 Jun 2020
Variational Auto-Regressive Gaussian Processes for Continual Learning
Variational Auto-Regressive Gaussian Processes for Continual Learning
Sanyam Kapoor
Theofanis Karaletsos
T. Bui
BDL
65
26
0
09 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
87
240
0
06 Jun 2020
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
139
416
0
06 Nov 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
141
135
0
06 Oct 2019
Generalized Inner Loop Meta-Learning
Generalized Inner Loop Meta-Learning
Jaya Kumar Alageshan
Brandon Amos
A. Verma
Phu Mon Htut
Artem Molchanov
Franziska Meier
Douwe Kiela
Kyunghyun Cho
Soumith Chintala
AI4CE
95
160
0
03 Oct 2019
Bayesian Batch Active Learning as Sparse Subset Approximation
Bayesian Batch Active Learning as Sparse Subset Approximation
Robert Pinsler
Jonathan Gordon
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
69
132
0
06 Aug 2019
Sparse Variational Inference: Bayesian Coresets from Scratch
Sparse Variational Inference: Bayesian Coresets from Scratch
Trevor Campbell
Boyan Beronov
59
38
0
07 Jun 2019
Elements of Sequential Monte Carlo
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
75
97
0
12 Mar 2019
An Empirical Study of Example Forgetting during Deep Neural Network
  Learning
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
138
743
0
12 Dec 2018
Dataset Distillation
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
99
297
0
27 Nov 2018
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
158
1,057
0
18 Oct 2018
Importance Weighting and Variational Inference
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
93
108
0
27 Aug 2018
Online Structured Laplace Approximations For Overcoming Catastrophic
  Forgetting
Online Structured Laplace Approximations For Overcoming Catastrophic Forgetting
H. Ritter
Aleksandar Botev
David Barber
BDLCLL
91
334
0
20 May 2018
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Trevor Campbell
Tamara Broderick
90
137
0
05 Feb 2018
Variational Continual Learning
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLLVLMBDL
116
736
0
29 Oct 2017
Automated Scalable Bayesian Inference via Hilbert Coresets
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell
Tamara Broderick
88
127
0
13 Oct 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GANBDL
80
635
0
19 May 2017
Reinterpreting Importance-Weighted Autoencoders
Reinterpreting Importance-Weighted Autoencoders
Chris Cremer
Q. Morris
David Duvenaud
BDLFAtt
125
94
0
10 Apr 2017
Practical Coreset Constructions for Machine Learning
Practical Coreset Constructions for Machine Learning
Olivier Bachem
Mario Lucic
Andreas Krause
72
186
0
19 Mar 2017
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
89
116
0
27 Oct 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
72
219
0
20 May 2016
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRLVLM
94
338
0
07 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
284
1,246
0
01 Sep 2015
Strong Coresets for Hard and Soft Bregman Clustering with Applications
  to Exponential Family Mixtures
Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures
Mario Lucic
Olivier Bachem
Andreas Krause
46
80
0
21 Aug 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
239
946
0
11 Feb 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
156
1,168
0
31 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
277
2,628
0
29 Jun 2012
Super-Samples from Kernel Herding
Super-Samples from Kernel Herding
Yutian Chen
Max Welling
Alex Smola
182
343
0
15 Mar 2012
A Unified Framework for Approximating and Clustering Data
A Unified Framework for Approximating and Clustering Data
Dan Feldman
M. Langberg
182
458
0
07 Jun 2011
1