ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.02235
  4. Cited By
Materials Property Prediction with Uncertainty Quantification: A
  Benchmark Study
v1v2 (latest)

Materials Property Prediction with Uncertainty Quantification: A Benchmark Study

4 November 2022
Daniel Varivoda
Rongzhi Dong
Sadman Sadeed Omee
Jianjun Hu
    AI4CE
ArXiv (abs)PDFHTMLGithub (14★)

Papers citing "Materials Property Prediction with Uncertainty Quantification: A Benchmark Study"

15 / 15 papers shown
Title
Scalable deeper graph neural networks for high-performance materials
  property prediction
Scalable deeper graph neural networks for high-performance materials property prediction
Sadman Sadeed Omee
Steph-Yves M. Louis
Nihang Fu
Lai Wei
Sourin Dey
Rongzhi Dong
Qinyang Li
Jianjun Hu
119
76
0
25 Sep 2021
Uncertainty Prediction for Machine Learning Models of Material
  Properties
Uncertainty Prediction for Machine Learning Models of Material Properties
F. Tavazza
Brian L. DeCost
K. Choudhary
33
39
0
16 Jul 2021
A Gentle Introduction to Conformal Prediction and Distribution-Free
  Uncertainty Quantification
A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification
Anastasios Nikolas Angelopoulos
Stephen Bates
OOD
219
624
0
15 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
240
1,164
0
07 Jul 2021
Assigning Confidence to Molecular Property Prediction
Assigning Confidence to Molecular Property Prediction
AkshatKumar Nigam
R. Pollice
Matthew F. D. Hurley
Riley J. Hickman
Matteo Aldeghi
Naruki Yoshikawa
Seyone Chithrananda
Vincent A. Voelz
Alán Aspuru-Guzik
AI4CE
119
47
0
23 Feb 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
353
1,935
0
12 Nov 2020
Uncertainty Quantification Using Neural Networks for Molecular Property
  Prediction
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
Lior Hirschfeld
Kyle Swanson
Kevin Kaichuang Yang
Regina Barzilay
Connor W. Coley
99
191
0
20 May 2020
Predicting Elastic Properties of Materials from Electronic Charge
  Density Using 3D Deep Convolutional Neural Networks
Predicting Elastic Properties of Materials from Electronic Charge Density Using 3D Deep Convolutional Neural Networks
Yong Zhao
Kunpeng Yuan
Yinqiao Liu
Steph-Yves M. Louis
Ming Hu
Jianjun Hu
43
25
0
17 Mar 2020
Deep Evidential Regression
Deep Evidential Regression
Alexander Amini
Wilko Schwarting
A. Soleimany
Daniela Rus
EDLPERBDLUDUQCV
103
442
0
07 Oct 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
807
8,597
0
03 Jan 2019
Learning to fail: Predicting fracture evolution in brittle material
  models using recurrent graph convolutional neural networks
Learning to fail: Predicting fracture evolution in brittle material models using recurrent graph convolutional neural networks
Max Schwarzer
Bryce Rogan
Yadong Ruan
Zhengming Song
Diana Lee
...
V. Chau
B. Moore
E. Rougier
Hari S. Viswanathan
G. Srinivasan
AI4CE
41
70
0
14 Oct 2018
Deep Confidence: A Computationally Efficient Framework for Calculating
  Reliable Errors for Deep Neural Networks
Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks
I. Cortés-Ciriano
A. Bender
OODUQCV
67
61
0
24 Sep 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OODUQCVEDLBDL
190
1,005
0
05 Jun 2018
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
157
1,087
0
26 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
847
5,847
0
05 Dec 2016
1