ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01258
  4. Cited By
Instance-Dependent Generalization Bounds via Optimal Transport
v1v2v3v4 (latest)

Instance-Dependent Generalization Bounds via Optimal Transport

2 November 2022
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
ArXiv (abs)PDFHTML

Papers citing "Instance-Dependent Generalization Bounds via Optimal Transport"

50 / 59 papers shown
Title
Neural Spacetimes for DAG Representation Learning
Neural Spacetimes for DAG Representation Learning
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael Bronstein
CML
125
2
0
25 Aug 2024
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
77
13
0
26 Feb 2022
On change of measure inequalities for $f$-divergences
On change of measure inequalities for fff-divergences
Antoine Picard-Weibel
Benjamin Guedj
68
13
0
11 Feb 2022
On the approximation of functions by tanh neural networks
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
55
139
0
18 Apr 2021
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
236
273
0
18 Apr 2021
Robustness to Pruning Predicts Generalization in Deep Neural Networks
Robustness to Pruning Predicts Generalization in Deep Neural Networks
Lorenz Kuhn
Clare Lyle
Aidan Gomez
Jonas Rothfuss
Y. Gal
86
14
0
10 Mar 2021
Failures of model-dependent generalization bounds for least-norm
  interpolation
Failures of model-dependent generalization bounds for least-norm interpolation
Peter L. Bartlett
Philip M. Long
148
29
0
16 Oct 2020
Neural Rough Differential Equations for Long Time Series
Neural Rough Differential Equations for Long Time Series
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
73
133
0
17 Sep 2020
Finite-Sample Guarantees for Wasserstein Distributionally Robust
  Optimization: Breaking the Curse of Dimensionality
Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality
Rui Gao
72
92
0
09 Sep 2020
On the Generalization Properties of Adversarial Training
On the Generalization Properties of Adversarial Training
Yue Xing
Qifan Song
Guang Cheng
AAML
68
34
0
15 Aug 2020
A generative adversarial network approach to calibration of local
  stochastic volatility models
A generative adversarial network approach to calibration of local stochastic volatility models
Christa Cuchiero
Wahid Khosrawi
Josef Teichmann
GAN
158
69
0
05 May 2020
Exactly Computing the Local Lipschitz Constant of ReLU Networks
Exactly Computing the Local Lipschitz Constant of ReLU Networks
Matt Jordan
A. Dimakis
70
112
0
02 Mar 2020
A short note on learning discrete distributions
A short note on learning discrete distributions
C. Canonne
39
68
0
25 Feb 2020
Generalised Lipschitz Regularisation Equals Distributional Robustness
Generalised Lipschitz Regularisation Equals Distributional Robustness
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
78
21
0
11 Feb 2020
Fantastic Generalization Measures and Where to Find Them
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
145
611
0
04 Dec 2019
An Alternative Probabilistic Interpretation of the Huber Loss
An Alternative Probabilistic Interpretation of the Huber Loss
Gregory P. Meyer
83
107
0
05 Nov 2019
Wasserstein Smoothing: Certified Robustness against Wasserstein
  Adversarial Attacks
Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks
Alexander Levine
Soheil Feizi
AAML
45
61
0
23 Oct 2019
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
64
395
0
23 Aug 2019
The phase diagram of approximation rates for deep neural networks
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
76
122
0
22 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
109
461
0
12 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed
  Classifiers
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
90
552
0
09 Jun 2019
PAC-Bayes Un-Expected Bernstein Inequality
PAC-Bayes Un-Expected Bernstein Inequality
Zakaria Mhammedi
Peter Grünwald
Benjamin Guedj
63
47
0
31 May 2019
Distributionally Robust Optimization and Generalization in Kernel
  Methods
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
83
133
0
27 May 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise
  for Overparameterized Neural Networks
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
122
353
0
27 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
171
2,052
0
08 Feb 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
247
1,659
0
28 Dec 2018
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
90
325
0
13 Nov 2018
Predicting the Generalization Gap in Deep Networks with Margin
  Distributions
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
95
199
0
28 Sep 2018
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
69
17
0
31 Aug 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
452
5,168
0
19 Jun 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
130
414
0
01 Jun 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian
  Compression Approach
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
75
215
0
16 Apr 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
172
481
0
12 Apr 2018
Stronger generalization bounds for deep nets via a compression approach
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLTAI4CE
93
643
0
14 Feb 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization
  properties of Entropy-SGD and data-dependent priors
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
77
145
0
26 Dec 2017
Size-Independent Sample Complexity of Neural Networks
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
157
551
0
18 Dec 2017
The Implicit Bias of Gradient Descent on Separable Data
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
172
924
0
27 Oct 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for
  Neural Networks
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
90
610
0
29 Jul 2017
Sharp asymptotic and finite-sample rates of convergence of empirical
  measures in Wasserstein distance
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
213
421
0
01 Jul 2017
Exploring Generalization in Deep Learning
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
162
1,259
0
27 Jun 2017
Spectrally-normalized margin bounds for neural networks
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
214
1,225
0
26 Jun 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
150
808
0
28 Apr 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
117
820
0
31 Mar 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise
  linear neural networks
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
220
434
0
08 Mar 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,636
0
10 Nov 2016
Simpler PAC-Bayesian Bounds for Hostile Data
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
155
72
0
23 Oct 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
436
2,946
0
15 Sep 2016
Robust Large Margin Deep Neural Networks
Robust Large Margin Deep Neural Networks
Jure Sokolić
Raja Giryes
Guillermo Sapiro
M. Rodrigues
76
309
0
26 May 2016
Quantifying Distributional Model Risk via Optimal Transport
Quantifying Distributional Model Risk via Optimal Transport
Jose H. Blanchet
Karthyek Murthy
78
426
0
05 Apr 2016
On the properties of variational approximations of Gibbs posteriors
On the properties of variational approximations of Gibbs posteriors
Pierre Alquier
James Ridgway
Nicolas Chopin
109
256
0
12 Jun 2015
12
Next