Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.01258
Cited By
v1
v2
v3
v4 (latest)
Instance-Dependent Generalization Bounds via Optimal Transport
2 November 2022
Songyan Hou
Parnian Kassraie
Anastasis Kratsios
Andreas Krause
Jonas Rothfuss
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Instance-Dependent Generalization Bounds via Optimal Transport"
50 / 59 papers shown
Title
Neural Spacetimes for DAG Representation Learning
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael Bronstein
CML
125
2
0
25 Aug 2024
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
77
13
0
26 Feb 2022
On change of measure inequalities for
f
f
f
-divergences
Antoine Picard-Weibel
Benjamin Guedj
68
13
0
11 Feb 2022
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
55
139
0
18 Apr 2021
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
236
273
0
18 Apr 2021
Robustness to Pruning Predicts Generalization in Deep Neural Networks
Lorenz Kuhn
Clare Lyle
Aidan Gomez
Jonas Rothfuss
Y. Gal
86
14
0
10 Mar 2021
Failures of model-dependent generalization bounds for least-norm interpolation
Peter L. Bartlett
Philip M. Long
148
29
0
16 Oct 2020
Neural Rough Differential Equations for Long Time Series
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
73
133
0
17 Sep 2020
Finite-Sample Guarantees for Wasserstein Distributionally Robust Optimization: Breaking the Curse of Dimensionality
Rui Gao
72
92
0
09 Sep 2020
On the Generalization Properties of Adversarial Training
Yue Xing
Qifan Song
Guang Cheng
AAML
68
34
0
15 Aug 2020
A generative adversarial network approach to calibration of local stochastic volatility models
Christa Cuchiero
Wahid Khosrawi
Josef Teichmann
GAN
158
69
0
05 May 2020
Exactly Computing the Local Lipschitz Constant of ReLU Networks
Matt Jordan
A. Dimakis
70
112
0
02 Mar 2020
A short note on learning discrete distributions
C. Canonne
39
68
0
25 Feb 2020
Generalised Lipschitz Regularisation Equals Distributional Robustness
Zac Cranko
Zhan Shi
Xinhua Zhang
Richard Nock
Simon Kornblith
OOD
78
21
0
11 Feb 2020
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
145
611
0
04 Dec 2019
An Alternative Probabilistic Interpretation of the Huber Loss
Gregory P. Meyer
83
107
0
05 Nov 2019
Wasserstein Smoothing: Certified Robustness against Wasserstein Adversarial Attacks
Alexander Levine
Soheil Feizi
AAML
45
61
0
23 Oct 2019
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
64
395
0
23 Aug 2019
The phase diagram of approximation rates for deep neural networks
Dmitry Yarotsky
Anton Zhevnerchuk
76
122
0
22 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
109
461
0
12 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
90
552
0
09 Jun 2019
PAC-Bayes Un-Expected Bernstein Inequality
Zakaria Mhammedi
Peter Grünwald
Benjamin Guedj
63
47
0
31 May 2019
Distributionally Robust Optimization and Generalization in Kernel Methods
Matthew Staib
Stefanie Jegelka
83
133
0
27 May 2019
Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks
Mingchen Li
Mahdi Soltanolkotabi
Samet Oymak
NoLa
122
353
0
27 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
171
2,052
0
08 Feb 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
247
1,659
0
28 Dec 2018
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
90
325
0
13 Nov 2018
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
95
199
0
28 Sep 2018
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
69
17
0
31 Aug 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
452
5,168
0
19 Jun 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
130
414
0
01 Jun 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
75
215
0
16 Apr 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
172
481
0
12 Apr 2018
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
93
643
0
14 Feb 2018
Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors
Gintare Karolina Dziugaite
Daniel M. Roy
MLT
77
145
0
26 Dec 2017
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
157
551
0
18 Dec 2017
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
172
924
0
27 Oct 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
90
610
0
29 Jul 2017
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
213
421
0
01 Jul 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
162
1,259
0
27 Jun 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
214
1,225
0
26 Jun 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
150
808
0
28 Apr 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
117
820
0
31 Mar 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
220
434
0
08 Mar 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,636
0
10 Nov 2016
Simpler PAC-Bayesian Bounds for Hostile Data
Pierre Alquier
Benjamin Guedj
155
72
0
23 Oct 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
436
2,946
0
15 Sep 2016
Robust Large Margin Deep Neural Networks
Jure Sokolić
Raja Giryes
Guillermo Sapiro
M. Rodrigues
76
309
0
26 May 2016
Quantifying Distributional Model Risk via Optimal Transport
Jose H. Blanchet
Karthyek Murthy
78
426
0
05 Apr 2016
On the properties of variational approximations of Gibbs posteriors
Pierre Alquier
James Ridgway
Nicolas Chopin
109
256
0
12 Jun 2015
1
2
Next