Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.00541
Cited By
Logic-Based Explainability in Machine Learning
24 October 2022
Sasha Rubin
LRM
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Logic-Based Explainability in Machine Learning"
33 / 33 papers shown
Title
Feature Relevancy, Necessity and Usefulness: Complexity and Algorithms
Tomás Capdevielle
Santiago Cifuentes
FAtt
35
0
0
06 May 2025
On the Complexity of Global Necessary Reasons to Explain Classification
M. Calautti
Enrico Malizia
Cristian Molinaro
FAtt
63
0
0
12 Jan 2025
The Sets of Power
Joao Marques-Silva
Carlos Mencía
Raúl Mencía
21
0
0
10 Oct 2024
Abductive and Contrastive Explanations for Scoring Rules in Voting
Clément Contet
Umberto Grandi
Jérome Mengin
FAtt
32
0
0
23 Aug 2024
Query languages for neural networks
Martin Grohe
Christoph Standke
Juno Steegmans
Jan Van den Bussche
NAI
27
1
0
19 Aug 2024
Explaining Decisions in ML Models: a Parameterized Complexity Analysis
S. Ordyniak
Giacomo Paesani
Mateusz Rychlicki
Stefan Szeider
16
1
0
22 Jul 2024
Local vs. Global Interpretability: A Computational Complexity Perspective
Shahaf Bassan
Guy Amir
Guy Katz
37
6
0
05 Jun 2024
Logic-Based Explainability: Past, Present & Future
Joao Marques-Silva
26
2
0
04 Jun 2024
From SHAP Scores to Feature Importance Scores
Olivier Letoffe
Xuanxiang Huang
Nicholas M. Asher
Sasha Rubin
FAtt
41
6
0
20 May 2024
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey
Rokas Gipiškis
Chun-Wei Tsai
Olga Kurasova
61
5
0
02 May 2024
A Uniform Language to Explain Decision Trees
Marcelo Arenas
Pablo Barceló
Diego Bustamante
Jose Caraball
Bernardo Subercaseaux
11
0
0
18 Oct 2023
Refutation of Shapley Values for XAI -- Additional Evidence
Xuanxiang Huang
Sasha Rubin
AAML
19
4
0
30 Sep 2023
A Refutation of Shapley Values for Explainability
Xuanxiang Huang
Sasha Rubin
FAtt
13
3
0
06 Sep 2023
Explainable Answer-set Programming
Tobias Geibinger
LRM
17
1
0
30 Aug 2023
On Formal Feature Attribution and Its Approximation
Jinqiang Yu
Alexey Ignatiev
Peter J. Stuckey
20
8
0
07 Jul 2023
Explainability is NOT a Game
Sasha Rubin
Xuanxiang Huang
16
17
0
27 Jun 2023
Disproving XAI Myths with Formal Methods -- Initial Results
Sasha Rubin
35
8
0
13 May 2023
Attribution-Scores and Causal Counterfactuals as Explanations in Artificial Intelligence
Leopoldo Bertossi
XAI
CML
28
5
0
06 Mar 2023
The Inadequacy of Shapley Values for Explainability
Xuanxiang Huang
Sasha Rubin
FAtt
26
41
0
16 Feb 2023
COMET: Neural Cost Model Explanation Framework
Isha Chaudhary
Alex Renda
Charith Mendis
Gagandeep Singh
21
2
0
14 Feb 2023
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
37
1
0
18 Aug 2022
On Computing Relevant Features for Explaining NBCs
Yacine Izza
Sasha Rubin
28
5
0
11 Jul 2022
On Tackling Explanation Redundancy in Decision Trees
Yacine Izza
Alexey Ignatiev
Sasha Rubin
FAtt
48
58
0
20 May 2022
Provably Precise, Succinct and Efficient Explanations for Decision Trees
Yacine Izza
Alexey Ignatiev
Nina Narodytska
Martin C. Cooper
Sasha Rubin
FAtt
32
7
0
19 May 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
177
186
0
03 Feb 2022
Efficiently Explaining CSPs with Unsatisfiable Subset Optimization
Emilio Gamba
B. Bogaerts
Tias Guns
LRM
34
6
0
25 May 2021
On the Complexity of SHAP-Score-Based Explanations: Tractability via Knowledge Compilation and Non-Approximability Results
Marcelo Arenas
Pablo Barceló
Leopoldo Bertossi
Mikaël Monet
FAtt
14
35
0
16 Apr 2021
An Efficient Diagnosis Algorithm for Inconsistent Constraint Sets
Alexander Felfernig
Monika Schubert
Christoph Zehentner
44
190
0
17 Feb 2021
Model Interpretability through the Lens of Computational Complexity
Pablo Barceló
Mikaël Monet
Jorge A. Pérez
Bernardo Subercaseaux
121
94
0
23 Oct 2020
Bridging the Gap: Providing Post-Hoc Symbolic Explanations for Sequential Decision-Making Problems with Inscrutable Representations
S. Sreedharan
Utkarsh Soni
Mudit Verma
Siddharth Srivastava
S. Kambhampati
73
30
0
04 Feb 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
51
195
0
06 Apr 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
1