90
0

On the Complexity of Global Necessary Reasons to Explain Classification

Abstract

Explainable AI has garnered considerable attention in recent years, as understanding the reasons behind decisions or predictions made by AI systems is crucial for their successful adoption. Explaining classifiers' behavior is one prominent problem. Work in this area has proposed notions of both local and global explanations, where the former are concerned with explaining a classifier's behavior for a specific instance, while the latter are concerned with explaining the overall classifier's behavior regardless of any specific instance. In this paper, we focus on global explanations, and explain classification in terms of ``minimal'' necessary conditions for the classifier to assign a specific class to a generic instance. We carry out a thorough complexity analysis of the problem for natural minimality criteria and important families of classifiers considered in the literature.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.