Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.00247
Cited By
Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning
1 November 2022
Riashat Islam
Hongyu Zang
Anirudh Goyal
Alex Lamb
Kenji Kawaguchi
Xin-hui Li
Romain Laroche
Yoshua Bengio
Rémi Tachet des Combes
OffRL
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning"
9 / 9 papers shown
Title
Mitigating Adversarial Perturbations for Deep Reinforcement Learning via Vector Quantization
Tung M. Luu
Thanh Nguyen
Tee Joshua Tian Jin
Sungwoon Kim
Chang D. Yoo
AAML
30
0
0
04 Oct 2024
Query-based Semantic Gaussian Field for Scene Representation in Reinforcement Learning
Jiaxu Wang
Ziyi Zhang
Qiang Zhang
Jia Li
Jingkai Sun
Mingyuan Sun
Junhao He
Renjing Xu
3DGS
39
3
0
04 Jun 2024
LAGMA: LAtent Goal-guided Multi-Agent Reinforcement Learning
Hyungho Na
IL-Chul Moon
45
1
0
30 May 2024
Behavior Generation with Latent Actions
Seungjae Lee
Yibin Wang
Haritheja Etukuru
H. J. Kim
Mahi Shafiullah
Lerrel Pinto
VGen
OffRL
35
66
0
05 Mar 2024
Learning Top-k Subtask Planning Tree based on Discriminative Representation Pre-training for Decision Making
Jingqing Ruan
Kaishen Wang
Qingyang Zhang
Dengpeng Xing
Bo Xu
33
0
0
18 Dec 2023
CQM: Curriculum Reinforcement Learning with a Quantized World Model
Seungjae Lee
Daesol Cho
Jonghae Park
H. J. Kim
36
6
0
26 Oct 2023
Modularity in Deep Learning: A Survey
Haozhe Sun
Isabelle Guyon
MoMe
40
2
0
02 Oct 2023
SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning
D. Shim
Seungjae Lee
H. J. Kim
40
15
0
27 Jan 2023
Decoupling Representation Learning from Reinforcement Learning
Adam Stooke
Kimin Lee
Pieter Abbeel
Michael Laskin
SSL
DRL
286
341
0
14 Sep 2020
1