Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.17283
Cited By
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
31 October 2022
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data"
23 / 23 papers shown
Title
In-silico biological discovery with large perturbation models
Djordje Miladinovic
Tobias Hoppe
Mathieu Chevalley
Andreas Georgiou
Lachlan Stuart
Arash Mehrjou
M. Bantscheff
Bernhard Schölkopf
Patrick Schwab
34
0
0
30 Mar 2025
CausalRivers -- Scaling up benchmarking of causal discovery for real-world time-series
Gideon Stein
M. Shadaydeh
Jan Blunk
Niklas Penzel
Joachim Denzler
AI4TS
37
0
0
21 Mar 2025
Addressing pitfalls in implicit unobserved confounding synthesis using explicit block hierarchical ancestral sampling
Xudong Sun
Alex Markham
Pratik Misra
Carsten Marr
CML
68
0
0
12 Mar 2025
Large Language Models for Zero-shot Inference of Causal Structures in Biology
Izzy Newsham
Luka Kovacevic
Richard Moulange
Nan Rosemary Ke
Sach Mukherjee
AI4CE
58
0
0
06 Mar 2025
IGDA: Interactive Graph Discovery through Large Language Model Agents
Alex Havrilla
David Alvarez-Melis
Nicolò Fusi
AI4CE
45
0
0
24 Feb 2025
CausalMan: A physics-based simulator for large-scale causality
Nicholas Tagliapietra
J. Luettin
Lavdim Halilaj
Moritz Willig
Tim Pychynski
Kristian Kersting
CML
55
0
0
18 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
64
3
0
04 Feb 2025
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Seungheun Baek
Soyon Park
Y. T. Chok
Mogan Gim
Jaewoo Kang
DRL
40
0
0
31 Jan 2025
Scalable Temporal Anomaly Causality Discovery in Large Systems: Achieving Computational Efficiency with Binary Anomaly Flag Data
M. Asres
C. Omlin
the CMS-HCAL Collaboration
71
0
0
16 Dec 2024
Efficient Differentiable Discovery of Causal Order
Mathieu Chevalley
Arash Mehrjou
Patrick Schwab
40
0
0
11 Oct 2024
Simulation-based Benchmarking for Causal Structure Learning in Gene Perturbation Experiments
Luka Kovacevic
Izzy Newsham
Sach Mukherjee
John Whittaker
CML
32
2
0
08 Jul 2024
Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm
Mathieu Chevalley
Patrick Schwab
Arash Mehrjou
28
1
0
28 May 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
41
7
0
02 Feb 2024
Assessing the overall and partial causal well-specification of nonlinear additive noise models
Christoph Schultheiss
Peter Bühlmann
CML
16
1
0
25 Oct 2023
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Yoshua Bengio
Dianbo Liu
17
4
0
05 Oct 2023
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
30
11
0
03 Oct 2023
The CausalBench challenge: A machine learning contest for gene network inference from single-cell perturbation data
Mathieu Chevalley
Jacob A. Sackett-Sanders
Yusuf Roohani
Pascal Notin
A. Bakulin
...
Achille Nazaret
Markus Püschel
Chris Wendler
Arash Mehrjou
Patrick Schwab
CML
29
10
0
29 Aug 2023
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
45
7
0
18 Jul 2023
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Chris C. Emezue
Alexandre Drouin
T. Deleu
Stefan Bauer
Yoshua Bengio
CML
27
2
0
11 Jul 2023
Multi-omics Prediction from High-content Cellular Imaging with Deep Learning
Rahil Mehrizi
Arash Mehrjou
M. Alegro
Yi Zhao
Benedetta Carbone
...
S. Sanford
Hakan Keles
M. Bantscheff
Cuong Nguyen
Patrick Schwab
13
4
0
15 Jun 2023
Learning DAGs from Data with Few Root Causes
Panagiotis Misiakos
Chris Wendler
Markus Püschel
CML
29
10
0
25 May 2023
Causal Fourier Analysis on Directed Acyclic Graphs and Posets
B. Seifert
Chris Wendler
Markus Püschel
40
19
0
16 Sep 2022
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
103
258
0
29 Sep 2019
1