ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.13741
  4. Cited By
Deep Neural Networks as the Semi-classical Limit of Topological Quantum
  Neural Networks: The problem of generalisation

Deep Neural Networks as the Semi-classical Limit of Topological Quantum Neural Networks: The problem of generalisation

25 October 2022
A. Marcianò
De-Wei Chen
Filippo Fabrocini
C. Fields
M. Lulli
Emanuele Zappala
    GNN
ArXivPDFHTML

Papers citing "Deep Neural Networks as the Semi-classical Limit of Topological Quantum Neural Networks: The problem of generalisation"

21 / 21 papers shown
Title
Deep learning: a statistical viewpoint
Deep learning: a statistical viewpoint
Peter L. Bartlett
Andrea Montanari
Alexander Rakhlin
55
276
0
16 Mar 2021
Understanding Generalization in Deep Learning via Tensor Methods
Understanding Generalization in Deep Learning via Tensor Methods
Jingling Li
Yanchao Sun
Jiahao Su
Taiji Suzuki
Furong Huang
68
28
0
14 Jan 2020
Efficient Learning for Deep Quantum Neural Networks
Efficient Learning for Deep Quantum Neural Networks
Kerstin Beer
Dmytro Bondarenko
Terry Farrelly
T. Osborne
Robert Salzmann
Ramona Wolf
61
560
0
27 Feb 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
227
1,647
0
28 Dec 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
225
3,463
0
09 Mar 2018
To understand deep learning we need to understand kernel learning
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
60
418
0
05 Feb 2018
Theory of Deep Learning III: explaining the non-overfitting puzzle
Theory of Deep Learning III: explaining the non-overfitting puzzle
T. Poggio
Kenji Kawaguchi
Q. Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack Hidary
H. Mhaskar
ODL
55
128
0
30 Dec 2017
Deep Neural Network Capacity
Aosen Wang
Huan Zhou
Wenyao Xu
Xin Chen
20
4
0
16 Aug 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for
  Neural Networks
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
80
606
0
29 Jul 2017
Towards Understanding Generalization of Deep Learning: Perspective of
  Loss Landscapes
Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes
Lei Wu
Zhanxing Zhu
E. Weinan
ODL
62
221
0
30 Jun 2017
Exploring Generalization in Deep Learning
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
146
1,255
0
27 Jun 2017
A Closer Look at Memorization in Deep Networks
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
120
1,816
0
16 Jun 2017
Train longer, generalize better: closing the generalization gap in large
  batch training of neural networks
Train longer, generalize better: closing the generalization gap in large batch training of neural networks
Elad Hoffer
Itay Hubara
Daniel Soudry
ODL
169
799
0
24 May 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
813
0
31 Mar 2017
Sharp Minima Can Generalize For Deep Nets
Sharp Minima Can Generalize For Deep Nets
Laurent Dinh
Razvan Pascanu
Samy Bengio
Yoshua Bengio
ODL
112
772
0
15 Mar 2017
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
98
1,408
0
02 Mar 2017
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Generalization and Equilibrium in Generative Adversarial Nets (GANs)
Sanjeev Arora
Rong Ge
Yingyu Liang
Tengyu Ma
Yi Zhang
GAN
54
688
0
02 Mar 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
336
4,625
0
10 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
421
2,936
0
15 Sep 2016
Why does deep and cheap learning work so well?
Why does deep and cheap learning work so well?
Henry W. Lin
Max Tegmark
David Rolnick
72
607
0
29 Aug 2016
In Search of the Real Inductive Bias: On the Role of Implicit
  Regularization in Deep Learning
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
90
657
0
20 Dec 2014
1