Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.13300
Cited By
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
24 October 2022
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis"
49 / 49 papers shown
Title
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
78
1
0
31 Dec 2024
Neural Operators Can Play Dynamic Stackelberg Games
Guillermo Alvarez
Ibrahim Ekren
Anastasis Kratsios
Xuwei Yang
54
0
0
14 Nov 2024
Operator Learning of Lipschitz Operators: An Information-Theoretic Perspective
Samuel Lanthaler
69
3
0
26 Jun 2024
Low-dimensional approximations of the conditional law of Volterra processes: a non-positive curvature approach
Reza Arabpour
John Armstrong
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
18
2
0
30 May 2024
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
Anastasis Kratsios
Takashi Furuya
Jose Antonio Lara Benitez
Matti Lassas
Maarten V. de Hoop
60
13
0
13 Apr 2024
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
97
30
0
24 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
93
1
0
05 Feb 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurelien Lucchi
Anastasis Kratsios
David Belius
52
8
0
02 Feb 2024
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
110
4
0
23 Oct 2023
Memory of recurrent networks: Do we compute it right?
Giovanni Ballarin
Lyudmila Grigoryeva
Juan-Pablo Ortega
37
4
0
02 May 2023
Infinite-dimensional reservoir computing
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
59
9
0
02 Apr 2023
Operator learning with PCA-Net: upper and lower complexity bounds
S. Lanthaler
36
25
0
28 Mar 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
44
12
0
27 Feb 2023
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
55
18
0
27 Jan 2023
Limitations on approximation by deep and shallow neural networks
G. Petrova
P. Wojtaszczyk
89
7
0
30 Nov 2022
Chaotic Hedging with Iterated Integrals and Neural Networks
Ariel Neufeld
Philipp Schmocker
70
10
0
21 Sep 2022
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
75
11
0
14 Sep 2022
Wavelet neural operator: a neural operator for parametric partial differential equations
Tapas Tripura
S. Chakraborty
43
63
0
04 May 2022
Do ReLU Networks Have An Edge When Approximating Compactly-Supported Functions?
Anastasis Kratsios
Behnoosh Zamanlooy
MLT
91
3
0
24 Apr 2022
Deep Learning for the Benes Filter
Alexander Lobbe
38
3
0
09 Mar 2022
Pricing options on flow forwards by neural networks in Hilbert space
F. Benth
Nils Detering
Luca Galimberti
44
7
0
17 Feb 2022
Computation of conditional expectations with guarantees
Patrick Cheridito
Balint Gersey
33
2
0
03 Dec 2021
On the Provable Generalization of Recurrent Neural Networks
Lifu Wang
Bo Shen
Bo Hu
Xing Cao
70
8
0
29 Sep 2021
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
Ernesto De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
39
30
0
11 Jun 2021
Metric Entropy Limits on Recurrent Neural Network Learning of Linear Dynamical Systems
Clemens Hutter
R. Gül
Helmut Bölcskei
38
9
0
06 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
48
24
0
05 May 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
128
115
0
28 Feb 2021
Deep learning based numerical approximation algorithms for stochastic partial differential equations and high-dimensional nonlinear filtering problems
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
32
11
0
02 Dec 2020
Fading memory echo state networks are universal
Lukas Gonon
Juan-Pablo Ortega
46
59
0
22 Oct 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
411
2,355
0
18 Oct 2020
Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering
Calypso Herrera
Florian Krach
Josef Teichmann
BDL
AI4TS
28
31
0
08 Jun 2020
Deep neural networks for inverse problems with pseudodifferential operators: an application to limited-angle tomography
T. Bubba
Mathilde Galinier
Matti Lassas
M. Prato
Luca Ratti
S. Siltanen
37
29
0
02 Jun 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
89
247
0
09 Jan 2020
Deep learning architectures for nonlinear operator functions and nonlinear inverse problems
Maarten V. de Hoop
Matti Lassas
C. Wong
36
26
0
23 Dec 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
161
2,082
0
08 Oct 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
83
4,470
0
21 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
73
631
0
14 Aug 2019
Continual learning with hypernetworks
J. Oswald
Christian Henning
Benjamin Grewe
João Sacramento
CLL
50
354
0
03 Jun 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
63
329
0
21 May 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
35
210
0
08 Jan 2019
Learning The Invisible: A Hybrid Deep Learning-Shearlet Framework for Limited Angle Computed Tomography
T. Bubba
Gitta Kutyniok
Matti Lassas
M. März
Wojciech Samek
S. Siltanen
Vignesh Srinivasan
126
136
0
12 Nov 2018
Graph HyperNetworks for Neural Architecture Search
Chris Zhang
Mengye Ren
R. Urtasun
GNN
38
276
0
12 Oct 2018
Reservoir Computing Universality With Stochastic Inputs
Lukas Gonon
Juan-Pablo Ortega
27
111
0
07 Jul 2018
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
453
129,831
0
12 Jun 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
142
427
0
08 Mar 2017
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
137
1,226
0
03 Oct 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
56
372
0
16 Nov 2015
On the difficulty of training Recurrent Neural Networks
Razvan Pascanu
Tomas Mikolov
Yoshua Bengio
ODL
134
5,318
0
21 Nov 2012
1