ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12089
  4. Cited By
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
v1v2v3 (latest)

A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges

21 October 2022
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
    CML
ArXiv (abs)PDFHTML

Papers citing "A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges"

39 / 89 papers shown
Title
Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
Meta-GNN: On Few-shot Node Classification in Graph Meta-learning
Fan Zhou
Chengtai Cao
Kunpeng Zhang
Goce Trajcevski
Ting Zhong
Ji Geng
67
231
0
23 May 2019
Neural Graph Collaborative Filtering
Neural Graph Collaborative Filtering
Xiang Wang
Xiangnan He
Meng Wang
Fuli Feng
Tat-Seng Chua
187
2,990
0
20 May 2019
Edge-labeling Graph Neural Network for Few-shot Learning
Edge-labeling Graph Neural Network for Few-shot Learning
Jongmin Kim
Taesup Kim
Sungwoong Kim
Chang D. Yoo
94
457
0
04 May 2019
Neural Message Passing for Multi-Label Classification
Neural Message Passing for Multi-Label Classification
Jack Lanchantin
Arshdeep Sekhon
Yanjun Qi
61
38
0
17 Apr 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
150
1,328
0
10 Mar 2019
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
A. Pareja
Giacomo Domeniconi
Jie Chen
Tengfei Ma
Toyotaro Suzumura
H. Kanezashi
Tim Kaler
Tao B. Schardl
Charles E. Leisersen
GNN
124
1,076
0
26 Feb 2019
Attention is not Explanation
Attention is not Explanation
Sarthak Jain
Byron C. Wallace
FAtt
145
1,327
0
26 Feb 2019
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
94
542
0
19 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,114
0
11 Oct 2018
DeepInf: Social Influence Prediction with Deep Learning
DeepInf: Social Influence Prediction with Deep Learning
J. Qiu
Jian Tang
Hao Ma
Yuxiao Dong
Kuansan Wang
Jie Tang
GNNAI4CE
76
545
0
15 Jul 2018
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Rex Ying
Ruining He
Kaifeng Chen
Pong Eksombatchai
William L. Hamilton
J. Leskovec
GNNBDL
263
3,549
0
06 Jun 2018
Contextual Graph Markov Model: A Deep and Generative Approach to Graph
  Processing
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing
D. Bacciu
Federico Errica
Alessio Micheli
BDLGNN
70
73
0
27 May 2018
Adversarial Attacks on Neural Networks for Graph Data
Adversarial Attacks on Neural Networks for Graph Data
Daniel Zügner
Amir Akbarnejad
Stephan Günnemann
GNNAAMLOOD
159
1,070
0
21 May 2018
Non-Linear Temporal Subspace Representations for Activity Recognition
Non-Linear Temporal Subspace Representations for Activity Recognition
A. Cherian
S. Sra
Stephen Gould
Leonid Sigal
208
44
0
27 Mar 2018
Link Prediction Based on Graph Neural Networks
Link Prediction Based on Graph Neural Networks
Muhan Zhang
Yixin Chen
GNN
100
1,937
0
27 Feb 2018
Explainable Prediction of Medical Codes from Clinical Text
Explainable Prediction of Medical Codes from Clinical Text
J. Mullenbach
Sarah Wiegreffe
J. Duke
Jimeng Sun
Jacob Eisenstein
FAtt
88
574
0
15 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
131
3,967
0
06 Feb 2018
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
117
2,360
0
01 Nov 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,225
0
30 Oct 2017
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
118
1,961
0
19 Sep 2017
Learning Transferable Architectures for Scalable Image Recognition
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
180
5,605
0
21 Jul 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
247
4,272
0
22 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
725
132,199
0
12 Jun 2017
Supervised Community Detection with Line Graph Neural Networks
Supervised Community Detection with Line Graph Neural Networks
Zhengdao Chen
Xiang Li
Joan Bruna
69
78
0
23 May 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
596
7,485
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
337
1,834
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
412
1,824
0
25 Nov 2016
Training Sparse Neural Networks
Training Sparse Neural Networks
Suraj Srinivas
Akshayvarun Subramanya
R. Venkatesh Babu
142
207
0
21 Nov 2016
Understanding intermediate layers using linear classifier probes
Understanding intermediate layers using linear classifier probes
Guillaume Alain
Yoshua Bengio
FAtt
158
954
0
05 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
644
29,076
0
09 Sep 2016
node2vec: Scalable Feature Learning for Networks
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
191
10,903
0
03 Jul 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
353
7,669
0
30 Jun 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
381
14,260
0
23 Feb 2016
Gated Graph Sequence Neural Networks
Gated Graph Sequence Neural Networks
Yujia Li
Daniel Tarlow
Marc Brockschmidt
R. Zemel
GNN
347
3,285
0
17 Nov 2015
LINE: Large-scale Information Network Embedding
LINE: Large-scale Information Network Embedding
Jian Tang
Meng Qu
Mingzhe Wang
Ming Zhang
Jun Yan
Qiaozhu Mei
GNN
142
5,337
0
12 Mar 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
416
43,777
0
01 May 2014
DeepWalk: Online Learning of Social Representations
DeepWalk: Online Learning of Social Representations
Bryan Perozzi
Rami Al-Rfou
Steven Skiena
HAI
257
9,800
0
26 Mar 2014
Previous
12