Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.12089
Cited By
v1
v2
v3 (latest)
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
21 October 2022
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges"
50 / 89 papers shown
Title
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Zijian Li
102
7
0
31 Dec 2024
Counterfactual Learning on Graphs: A Survey
Zhimeng Guo
Teng Xiao
Zongyu Wu
Charu C. Aggarwal
Hui Liu
Suhang Wang
CML
AI4CE
83
19
0
03 Apr 2023
Global Counterfactual Explainer for Graph Neural Networks
Mert Kosan
Zexi Huang
Sourav Medya
Sayan Ranu
Ambuj K. Singh
76
50
0
21 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
68
54
0
16 Oct 2022
GREASE: Generate Factual and Counterfactual Explanations for GNN-based Recommendations
Ziheng Chen
Fabrizio Silvestri
Jia Wang
Yongfeng Zhang
Zhenhua Huang
H. Ahn
Gabriele Tolomei
CML
64
27
0
04 Aug 2022
GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks
Kenza Amara
Rex Ying
Zitao Zhang
Zhihao Han
Yinan Shan
U. Brandes
S. Schemm
Ce Zhang
73
55
0
20 Jun 2022
GRETEL: A unified framework for Graph Counterfactual Explanation Evaluation
Mario Alfonso Prado-Romero
Giovanni Stilo
32
16
0
07 Jun 2022
Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning
Juntao Tan
Shijie Geng
Zuohui Fu
Yingqiang Ge
Shuyuan Xu
Yunqi Li
Yongfeng Zhang
75
111
0
17 Feb 2022
Dimensionality Reduction Meets Message Passing for Graph Node Embeddings
Krzysztof Sadowski
Michal Szarmach
Eddie Mattia
51
6
0
01 Feb 2022
Multi-objective Explanations of GNN Predictions
Yifei Liu
Chao Chen
Yazheng Liu
Xi Zhang
Sihong Xie
50
13
0
29 Nov 2021
Space-Time-Separable Graph Convolutional Network for Pose Forecasting
Theodoros Sofianos
Alessio Sampieri
Luca Franco
Fabio Galasso
3DH
64
144
0
09 Oct 2021
Protein-RNA interaction prediction with deep learning: Structure matters
Junkang Wei
Siyuan Chen
Licheng Zong
Xin Gao
Yu Li
AI4CE
47
58
0
26 Jul 2021
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
157
99
0
08 Jul 2021
Counterfactual Graphs for Explainable Classification of Brain Networks
Carlo Abrate
Francesco Bonchi
CML
73
56
0
16 Jun 2021
A Comprehensive Survey on Graph Anomaly Detection with Deep Learning
Xiaoxiao Ma
Hongzhi Zhang
Shan Xue
Jian Yang
Chuan Zhou
Quan Z. Sheng
Hui Xiong
Leman Akoglu
GNN
AI4TS
82
559
0
14 Jun 2021
MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks
Danilo Numeroso
D. Bacciu
69
40
0
16 Apr 2021
Generative Causal Explanations for Graph Neural Networks
Wanyu Lin
Hao Lan
Baochun Li
CML
59
177
0
14 Apr 2021
Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation
Yi Sun
Abel N. Valente
Sijia Liu
Dakuo Wang
AAML
54
7
0
25 Mar 2021
GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks
Tianxiang Zhao
Xiang Zhang
Suhang Wang
108
333
0
16 Mar 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
83
392
0
09 Feb 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
156
145
0
05 Feb 2021
Graph Neural Network for Traffic Forecasting: A Survey
Weiwei Jiang
Jiayun Luo
GNN
AI4TS
AI4CE
222
877
0
27 Jan 2021
Identity-aware Graph Neural Networks
Jiaxuan You
Jonathan M. Gomes-Selman
Rex Ying
J. Leskovec
53
255
0
25 Jan 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
296
497
0
31 Dec 2020
Semi-Supervised Node Classification on Graphs: Markov Random Fields vs. Graph Neural Networks
Binghui Wang
Jinyuan Jia
Neil Zhenqiang Gong
GNN
92
18
0
24 Dec 2020
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
140
560
0
09 Nov 2020
Explaining Deep Graph Networks with Molecular Counterfactuals
Danilo Numeroso
D. Bacciu
46
10
0
09 Nov 2020
Contrastive Graph Neural Network Explanation
Lukas Faber
A. K. Moghaddam
Roger Wattenhofer
77
36
0
26 Oct 2020
Co-embedding of Nodes and Edges with Graph Neural Networks
Xiaodong Jiang
Ronghang Zhu
Pengsheng Ji
Sheng Li
GNN
50
76
0
25 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
87
403
0
19 Oct 2020
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh Nhat Vu
My T. Thai
BDL
75
337
0
12 Oct 2020
Hierarchical Message-Passing Graph Neural Networks
Zhiqiang Zhong
Cheng-Te Li
Jun Pang
82
49
0
08 Sep 2020
A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock Prices and News
Yang Li
Yi Pan
AIFin
43
159
0
23 Jul 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
236
821
0
16 Jul 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
103
19
0
26 Jun 2020
Graph Neural Network Encoding for Community Detection in Attribute Networks
Jianyong Sun
Wei Zheng
Qingfu Zhang
Zongben Xu
50
80
0
06 Jun 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
83
399
0
03 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
306
2,732
0
02 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
103
378
0
30 Apr 2020
Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program)
Joelle Pineau
Philippe Vincent-Lamarre
Koustuv Sinha
V. Larivière
A. Beygelzimer
Florence dÁlché-Buc
E. Fox
Hugo Larochelle
78
361
0
27 Mar 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
124
879
0
06 Mar 2020
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
69
51
0
15 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
121
6,269
0
22 Oct 2019
Unsupervised Boosting-based Autoencoder Ensembles for Outlier Detection
Hamed Sarvari
C. Domeniconi
Bardh Prenkaj
Giovanni Stilo
UQCV
44
19
0
22 Oct 2019
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
266
863
0
28 Sep 2019
HeteSpaceyWalk: A Heterogeneous Spacey Random Walk for Heterogeneous Information Network Embedding
Yu He
Yangqiu Song
Jianxin Li
Cheng Ji
Jian Peng
Hao Peng
75
112
0
07 Sep 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
568
14
0
23 Aug 2019
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
110
1,343
0
25 Jul 2019
Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting
Ana Lucic
H. Haned
Maarten de Rijke
66
63
0
17 Jul 2019
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification
Jun Wu
Jingrui He
Jiejun Xu
GNN
159
198
0
05 Jun 2019
1
2
Next