ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.09134
  4. Cited By
Principled Pruning of Bayesian Neural Networks through Variational Free
  Energy Minimization

Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization

17 October 2022
Jim Beckers
Bart Van Erp
Ziyue Zhao
K. Kondrashov
Bert De Vries
    AAML
ArXivPDFHTML

Papers citing "Principled Pruning of Bayesian Neural Networks through Variational Free Energy Minimization"

24 / 24 papers shown
Title
Robust Speech Recognition via Large-Scale Weak Supervision
Robust Speech Recognition via Large-Scale Weak Supervision
Alec Radford
Jong Wook Kim
Tao Xu
Greg Brockman
C. McLeavey
Ilya Sutskever
OffRL
104
3,515
0
06 Dec 2022
Restoring speech intelligibility for hearing aid users with deep
  learning
Restoring speech intelligibility for hearing aid users with deep learning
P. U. Diehl
Y. Singer
Hannes Zilly
U. Schonfeld
Paul Meyer-Rachner
Mark Berry
Henning Sprekeler
Elias Sprengel
A. Pudszuhn
V. Hofmann
19
19
0
23 Jun 2022
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLM
DiffM
259
6,768
0
13 Apr 2022
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
67
127
0
14 May 2021
Compacting Deep Neural Networks for Internet of Things: Methods and
  Applications
Compacting Deep Neural Networks for Internet of Things: Methods and Applications
Ke Zhang
Hanbo Ying
Hongning Dai
Lin Li
Yuangyuang Peng
Keyi Guo
Hongfang Yu
47
38
0
20 Mar 2021
Bayesian Neural Network Priors Revisited
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
79
140
0
12 Feb 2021
A Survey on Deep Neural Network Compression: Challenges, Overview, and
  Solutions
A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions
Rahul Mishra
Hari Prabhat Gupta
Tanima Dutta
28
90
0
05 Oct 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
56
620
0
14 Jul 2020
TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
Igor Fedorov
Marko Stamenovic
Carl R. Jensen
Li-Chia Yang
Ari Mandell
Yiming Gan
Matthew Mattina
P. Whatmough
26
97
0
20 May 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
138
10,591
0
17 Feb 2020
Bayesian Compression for Natural Language Processing
Bayesian Compression for Natural Language Processing
Nadezhda Chirkova
E. Lobacheva
Dmitry Vetrov
BDL
27
15
0
25 Oct 2018
Variational Bayesian dropout: pitfalls and fixes
Variational Bayesian dropout: pitfalls and fixes
Jiri Hron
A. G. Matthews
Zoubin Ghahramani
BDL
58
67
0
05 Jul 2018
A Survey of Model Compression and Acceleration for Deep Neural Networks
A Survey of Model Compression and Acceleration for Deep Neural Networks
Yu Cheng
Duo Wang
Pan Zhou
Zhang Tao
53
1,091
0
23 Oct 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
84
479
0
24 May 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
70
825
0
19 Jan 2017
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
159
4,748
0
04 Jan 2016
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
135
1,500
0
08 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
99
1,878
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
57
940
0
18 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
577
149,474
0
22 Dec 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
563
23,235
0
03 Jun 2014
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
163
2,605
0
29 Jun 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
280
3,278
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
123
4,275
0
18 Nov 2011
1