Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.08047
Cited By
Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
14 October 2022
Zeren Shui
Daniel S. Karls
Mingjian Wen
Ilia Nikiforov
E. Tadmor
George Karypis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties"
6 / 6 papers shown
Title
Transfer Learning for Molecular Property Predictions from Small Data Sets
Thorren Kirschbaum
A. Bande
AI4CE
24
1
0
20 Apr 2024
Synthetic pre-training for neural-network interatomic potentials
John L A Gardner
Kathryn T. Baker
Volker L. Deringer
AI4CE
24
18
0
24 Jul 2023
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,443
0
11 Nov 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
238
509
0
15 Jan 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
206
1,240
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
503
0
20 Oct 2020
1